簡易檢索 / 詳目顯示

研究生: 歐怡良
Ou, Yi-Liang
論文名稱: 小臼齒二級窩洞填補之應力奇異性分析
Stress Singularity Analysis in the Restorations of Premolar Class Ⅱ Cavities
指導教授: 褚晴暉
Chue, Ching-Hwei
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 101
中文關鍵詞: 應力奇異性階數二級窩洞應力奇異性
外文關鍵詞: Class Ⅱcavities, Stress singularity, Stress singularity order
相關次數: 點閱:142下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於嚴重的齟齒形式,常需要將原有牙齒本體予以部分移除,再行填充入新的填補材料,以重新恢復牙齒原有的功能,然而這種復形法必然有相異材料之鄰接界面存在,亦即將可能於界面尖端處發生局部的應力值過大現象,這是難以避免的。本研究將針對此種填補法中,數處可能發生異相材料交接界面之位置,依照其界面型態,分別以楔形(wedge)及全相(junction)結構來加以模擬,藉由Muskhelishvili複變函數理論運用於多種材料楔形結構之複變函數關係式,來分析各位置之應力奇異性。
    本論文將從固定牙齒本體的材料性質,而經由改變填補材料之材料性質著手,並設定所有材料均為等向性,分別變化填補物之楊氏係數及蒲松氏比,而討論在與牙齒本體各個不同角度組合之下,其可能發生的應力奇異性階數,將其畫成奇異性階數—角度分佈圖,找出最小奇異性階數所對應之角度,希冀提供移除窩洞幾何外型之設計參考。
    除了牙齒本體幾處可能發生材料不連續之界面外,另外探討了因為部分填補材料可能因為收縮現象而無法完全與牙齒本體密接,而在界面之處發生之脫離(debonding)現象,針對這種案例,本文係以不同於前述之不完全接合全相(debonding junction)結構來模擬,同樣也可以找出各角度組合所對應之應力奇異性階數。

    This paper presents the singular stress analysis near the apex of a structure formed from dental restoration of premolar class Ⅱ cavity. Based on the elasticity theory, the stresses may go infinity at the junctions of different materials (e.g. dentine, enamel, restoration materials). It will cause material separation and then totally fracture. In order to get rid of the failure probability, the degree of stress concentration has to be reduced. The stress singularity order and the stress intensity factor are two parameters, which are often used in the fracture analysis. The objective of this paper is to find the conditions such that non-singular stress fields are possible.
    Three positions in the restoration structure are of interested. They are the tips of interface between (1) enamel and restoration, (2) dentine and restoration, and (3) enamel, dentine and restoration. In the last two cases, the restoration mat be bonded or debonded to enamel or dentine. After employing the Kolosov-Muskhelishvili complex functions together with eigenfunction expansion method, the singularity orders are computed theoretically. The weak stress singularity conditions can be sought by proper selecting the cutting angles or the restoration materials.

    摘要Ⅰ AbstractⅡ 誌謝Ⅲ 目錄Ⅳ 表目錄Ⅵ 圖目錄Ⅶ 符號說明Ⅹ 第一章緒論1 1.1前言1 1.2文獻回顧3 1.3研究動機與目的5 1.4研究方法6 1.5本文架構7 第二章理論分析8 2.1Muskhelishvili[21]複變函數理論8 2.2應力奇異性階數之特徵方程式22 第三章問題描述28 3.1琺瑯質—填補物界面(Enamel-Restoration Interface)29 3.2象牙質—填補物界面(Dentine-Restoration Interface)31 3.3琺瑯質—象牙質—填補物界面(Enamel-Dentine-Restoration Interface)33 3.4象牙質—填補物不完全接合界面(Dentine-Restoration Debonding Interface)35 3.5琺瑯質—象牙質—填補物不完全接合界面(Enamel-Dentine-Restoration Debonding Interface)37 第四章結果與討論39 4.1琺瑯質—填補物界面(Enamel-Restoration Interface)39 4.2象牙質—填補物界面(Dentine-Restoration Interface)47 4.3琺瑯質—象牙質—填補物界面(Enamel-Dentine-Restoration Interface)58 4.4象牙質—填補物不完全接合界面(Dentine-Restoration Debonding Interface)67 4.5琺瑯質—象牙質—填補物不完全接合界面(Enamel-Dentine-Restoration Debonding Interface)76 第五章結論與建議84 參考文獻88 附錄A91 附錄B99

    [1] H bsch, P.F. and Middleton, J., “Asymptotic analysis of the stress field in adhering dental restorations”, Transactions of the ASME, Journal of Biomechanical Engineering, Vol. 122, pp. 408-415, 2000.
    [2] Cavel, W.T., Kelsey, P.W. and Blankenau, R.J., “An in vitro study of cuspal fracture”, Journal of Prosthetic Dentistry, Vol. 53, pp. 38-42,1985.
    [3] Gher, M.E.J., Dunlap, R.M., Anderson, M.H. and Kuhl, L.V., “Clinical survey of fractured teeth”, Journal of the American Dental Association,Vol. 114, pp. 174-177, 1987.
    [4] Lagouvardos, P., Sourai, P. and Douvitsas, G., “Coronal fractures in posterior teeth”, Operative Dentistry, Vol. 14, pp. 28-32, 1989.
    [5] Celik, E. and Aydinlik, E., “Effect of a dilacerated root on stress distribution to the tooth and supporting tissues”, Journal of Prosthetic Dentistry, Vol. 65, pp. 771-777, 1991.
    [6] Tjan, A.H.L., Bergh, B.H. and Lidner, C., “Effect of various incremental techniques on the marginal adaptation of class Ⅱ composite resin
    restorations”, Journal of Prosthetic Dentistry, Vol. 67, pp. 62-66, 1992.
    [7] Darbar, U.R., Huggett, R., Harrison, A. and Williams, K., “Finite element analysis of stress distribution at the tooth-denture base interface of acrylic resin teeth debonding from the denture base”, Journal of Prosthetic Dentistry, Vol. 74, pp. 591-594, 1995.
    [8] Lin, C.L., “Biomechanics of class II MOD cavity in a restored premolar”,Ph.D., NCKU, pp. 1-68, 2000.
    [9] Blaser, P.K., Lund, M.R., Cochran, M.A. and Potter, R.H., “Effect of designs of class 2 preparations on resistance of teeth to fracture”,Operative Dentistry, Vol. 8, pp. 6-10, 1983.
    [10] Khera, S.C., Goel, V.K., Chen, R.C.S. and Gurusami, S.A., “A three-dimensional finite element model”, Operative Dentistry, Vol. 13, pp. 128-137, 1988.
    [11] Khera, S.C., Goel, V.K., Chen, R.C.S. and Gurusami, S.A., “Parameters of MOD cavity preparations:A 3-D FEM study, PartⅡ”, Operative Dentistry,Vol. 16, pp. 42-54, 1991.
    [12] EL-Mowafy, O.M.,“Fracture strength and fracture patterns of maxillary premolars with approximal slot cavities”, Operative Dentistry, Vol. 18,pp. 160-166, 1993.
    [13] Ward, J.E., Moon, P.C., Levine, R.A. and Behrendt, C.L., “Effect of repair surface design, repair material, and processing method on the transverse strength of repaired acrylic denture resin”, Journal of Prosthetic Dentistry, Vol. 67, pp. 815-820, 1992.
    [14] Spears, I.R., van Noort, R., Crompton, R.H., Cardew, G.E. and Howard,I.C., “The effects of enamel anisotropy on the distribution of stress in a tooth”, Journal of Dental Research, Vol. 72, pp. 1526-1531, 1993.
    [15] Santos, A.C. and Meiers, J.C., “Fracture resistance of premolars with MOD amalgam restorations lined with amalgambond”, Operative Dentistry, Vol.19, pp. 2-6, 1994.
    [16] Williams, M.L., “Stress singularities resulting from various boundary conditions in angular corners of plates in extension”, Transactions of the ASME, Journal of Applied Mechanics, Vol. 74, pp. 526-528, 1952.
    [17] Bogy, D.B., “Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading”, Transactions of the ASME, Journal of Applied Mechanics, Vol. 35, pp. 460-466, 1968.
    [18] Bogy, D.B., “Two edge-bonded elastic wedges of different materials and wedge angles under surface transactions”, Transactions of the ASME,
    Journal of Applied Mechanics, Vol. 38, pp. 377-386, 1971.
    [19] Bogy, D.B. and Wang, K.C., “Stress singularities at interface corners in bonded dissimilar isotropic elastic materials”, International Journal of Solids and Structures, Vol. 7, pp. 993-1005, 1971.
    [20] Theocaris, P.S., “The order of singularity at a multi-wedge corner of a composite plate”, International Journal of Engineering Science, Vol. 12, pp. 107-120, 1974.
    [21] Muskhelishvili, N.I., “Some basic problems of the mathematical theory of elasticity”, Noordhoff, Holland, Chapter 5, 1953.
    [22] Dundurs, J., “Effect of elastic constants on stress in composite under plane deformation”, Journal of Composite Materials, Vol. 1, pp. 310-322,1967.
    [23] Chen, D.H. and Nisitani, H., “Singular stress field in two bonded wedges”, Transaction of Japan Society of Mechanical Engineering A, Vol.58, pp. 457-464, 1992.
    [24] Chen, D.H., “Stress intensity factors for V-notched strip under tension and in-plane bending”, International Journal of Fracture, Vol. 70, pp. 81-97, 1995.
    [25] Chen, D.H. and Nisitani, H., “Singular stress field near the corner of jointed dissimilar materials”, Transactions of the ASME, Journal of Applied Mechanics, Vol. 60, pp. 607-613, 1993.
    [26] Pageau, S.S., Joseph, P.F., and Biggers, S.B.J., “The order of stress singularities for bonded and disbonded three-material junctions”,
    International Journal of Solids and Structures, Vol. 31, pp. 2979-2997,1994.
    [27] Boresi, A.P. and Chong, K.P., “Elasticity in engineering mechanics”, Second edition, Wiley-Interscience, New York, Chapter 5, 2000.
    [28] Baum, L., Phillips, R.W., and Lund, M.R., “Textbook of operative dentistry”, Third edition, Saunders, Philadelphia, Chapter 11, 1995.

    下載圖示 校內:立即公開
    校外:2002-07-16公開
    QR CODE