| 研究生: |
鄭有志 Cheng, Yu-Chih |
|---|---|
| 論文名稱: |
Y2O3:Eu3+螢光粉體之製備及其
光性質之研究 Synthesis and Luminescence Properties of Y2O3:Eu3+ Phosphors |
| 指導教授: |
黃啟祥
Huang, Chi-Shaing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 氧化釔,紅色螢光粉,紫外光,溶膠-凝膠法,二氧化矽 |
| 外文關鍵詞: | sol-gel, SiO2, UV, red phosphor, Y2O3 |
| 相關次數: | 點閱:45 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為改善UV-LED用紅色螢光粉體之性質,本研究以固態法及溶膠-凝膠法合成Y2O3:Eu3+氧化物粉體,檢討其於383 nm長波長UV光激發光源下,Eu3+摻雜濃度、SiO2添加量、燒結條件等對合成螢光粉體之晶體結構、粉體粒徑大小及螢光粉體發光特性之影響。
以固態法及溶膠-凝膠法於1500℃煆燒4 h所合成之Y2O3:Eu3+(Eu3+=9 mole%)螢光粉體於360~420 nm之激發光源下,皆有吸收及發射現象;當激發光源為395 nm時,其最強之發射強度位於612 nm。
不論固態法或溶膠-凝膠法經1100~1500℃煆燒4 h後之Y2O3:Eu3+ (Eu3+=1~20 mole%)螢光粉體,均只含Y2O3之單一結晶相。於383 nm激發光源下,其612 nm發射強度是隨煆燒溫度之增加而增加,亦隨Eu3+摻雜濃度之增加而增加,19 mole% Eu3+摻雜時有最大之發射強度。此外4~10 wt% SiO2之添加可提升(Y0.91Eu0.09)2O3粉體之相對發射強度。相較於以固態法所合成之Y2O3:Eu3+螢光粉體,以溶膠-凝膠法所合成者其發射強度、相對量子效率以及吸收效率均較佳。
To improve the photoluminescence properties of red emission phosphors used for 383 nm UV-LED Y2O3:Eu3+ powders were synthesized by solid state and sol-gel methods. Effects of the contents of Eu2O3 & SiO2 and calcining parameters on the phosphors crystallization, particle size, shape and photoluminescence properties were investigated.
Y2O3:Eu3+ phosphor powders synthesized by solid state and sol-gel methods and then calcined at 1500℃for 4 h, show the absorption and emission behavior under excitation source around 360-420 nm UV-light. The phosphor shows the strongest emission peak at 612 nm when the excitation source is 395 nm.
The Y2O3:Eu3+ (Eu3+=1~20 mole%) phosphors synthesized by solid state and sol-gel method then calcined at 1100~1500℃ for 4 h both show one phase of Y2O3. Its relative emission intensity (at 612 nm) increases with calcining temperature and Eu3+ dopants. It shows the strongest emission intensity when 19 mole% Eu3+ doped in Y2O3 phosphor powder. 4~10 wt% of SiO2 additions increase the relative emission intensity of (Y0.91Eu0.09)2O3 phosphor powder. Y2O3:Eu3+ phosphor powder synthesized by sol-gel method shows better relative emission intensity, relative Q. E. and absorption efficiency than powders synthesized by solid state method.
[1] R. Schmechel, H. Winkler, Li Xaomao, M. Kennedy,
”Photoluminescence properties of nanocrystalline Y2O3:Eu3+ in different environments” Scripta Mater., 44, 1213 (2001)
[2] G. Blasse and B.C Grabmaier, “Luminescence Materials”, Springer- Verlag:New York, (1994)
[3] C. R. Ronda, J. Luminescence., 49, 72 (1997)
[4] T. Justel, “New development in the field of luminescent materials for lighting and displays”, J. Luminescence., 37, 3084 (1998)
[5] W. Zhang,”Optical properties of nanocrystalline Y2O3:Eu depending on its odd structure”, J. Colloid and Interface Sci. 262, 588 (2003)
[6] M.L. Pang, “Patterning and luminescent properties of nanocrystalline Y2O3:Eu3+ phosphor films by sol-gel soft lithography”, Materials Science and Engineering B, 100, 124 (2003)
[7] A. Nakamura, N. Nambu, ”Powder of Y2O3:Eu red phosphor synthesized from metal-EDTA complexes”, J. Ceramic Society of Japan, 111, 142 (2003)
[8] M. L. Pang, “Preparation, patterning and luminescence properties of nanocrystalline Gd2O3:A (A=Eu3+, Dy3+, Sm3+, Er3+) phosphor films via Pechini sol-gel soft lithography”, Optical Materials, 23, 547 (2003)
[9] Y. Kang, S. Park, “Preparation of nonaggregated Y2O3:Eu phosphor particles by spray pyrolysis method”, J. Mater. Res., 14, 2611 (1999)
[10] H. S. Roh, Y. C. Kang, “Y2O3:Eu phosphor particles prepared by spray pyrolysis from a solution containing citric acid and polyethylene glycol”, Applied Physics A, 76, 241 (2003)
[11] S. Yi, J. Bae,”Enhanced luminescence of pulsed-laser-deposited Y2O3:Eu3+ thin-film phosphor by Li doping”, Applied Physics Letters, 81, 3344 (2002)
[12] A. Konrad, J. Almanstotter, “Modeling the optical properties of fluorescent powders: Y1.91Eu0.09O3”, J. Applied Physics, 85, 1796 (1999)
[13] M. Kottaisamy, “Yttrium odide:Eu3+ red phosphor by self-propagating high temperature synthesis”, Materials Research Bulletin, 31, 1013 (1996)
[14] C. He, “Synthesis and photoluminescence of nano-Y2O3:Eu3+ phosphors”, Materials Research Bulletin, 38, 973 (2003)
[15] P. K. Sharma, M. H. Jilavi, “Tailoring the particle size from μm →nm scale by using a surface modifier and their effect on the fluorescence properties of europium doped yttria”, J. Luminescence, 82, 187 (1999)
[16] Phosphor Research Society, “Phosphor Handbook”, CRC Press: New York, (1999)
[17] J. Dhanaraj, “Photoluminescence characteristics of Y2O3:Eu3+ nanophosphors prepared using sol-gel thermolysis”, J. Phys. Chem. B, 105, 11098 (2001)
[18] J. Zhang, “Luminescence properties of Y2O3:Eu synthesized by sol-gel processing”, J. Mater. Proce. Tech., 121, 265 (2002)
[19] C. Cannas, “Study of the nanoparticle/matrix interactions in Y2O3-SiO2 samples”, Phys. Chem. Chem. Phys., 4, 2286 (2002)
[20] D. Li, “Study of energy-transfer interactions between Eu3+ ions in Y2O3 nanocrystals”, Acta physica sinica, 50, 933 (2001)
[21] C. Cannas, “Synthesis, characterisation and optical properties of nanocrystalline Y2O3-Eu(3+)dispersed in a silica matrix by a deposition-precipitation method”, J. of Mater Chemistry, 13, 3079 (2003)
[22] T. Ye, “Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors”, Materials Research Bulletin, 32, 501 (1997)
[23] J. Mckittrick, “The influence of processing parameters on luminescent oxide produced by combustion synthesis”, Displays, 19, 169 (1999)
[24] J. M. Fitz-gerald, “Synthesis of spherical luminescent particulate coatings”, J. of Applied Physics, 86, 1759 (1999)
[25] Y. Han, “Photoluminescence of organic-inorganic hybrid SiO2 xerogels”, Materials Letters, 54, 289 (2002)
[26] C. Shaw, “Luminescent nanophase binder systems for UV and VUV applications”, United States Patent , no. 6531074 (2001)
[27] J. Jean, “Y2O2S:Eu red phosphor powders coated with silica”, J. Am. Ceram. Soc., 83, 1928 (2000)
[28] R.C. Ropp, “Luminescence and the Solid State”, Elsevier Science Publishers, B. V., The Netherlands, (1991)
[29] Lyuji, Ozawa, “Cathodoluminescence”, Kodansha Ltd. Tokyo, (1990)
[30] P. Goldberg, “Luminescence of Inorganic Solids”, Acadamic Press Inc., New York, (1996)
[31] J. E. Yang, “The Application and Investigation of Luminescence Materials in Electronic Industry”, Technical Report of ITRI, Hsinchu, Taiwan, (1992)
[32] S. C. Tu, “The Structure and Property of Crystal”, Bouhaitang Co. Taiwan, 326, (1987)
[33] S. Cotton, “Lanthanides and Actinides”, Macmillan, London, 191, (1990)
[34] 方容川,“固體光譜學”,中國科技大學出版社:合肥,(2001)
[35] 柯以侃編著,“儀器分析”,文京圖書,(1996)
[36] H. Yamamoto, Physical Chemistry-six ed.; Oxford University Press: Tokyo, (1998)
[37] B. E. Douglas, D. H. McDaniel and J. J. Alexander, “Concepts and Models of Inorganic Chemistry-3rd”, John Wiley & Sons, Inc,: New York, (1994)
[38] A. H. Kitai, ”Solid State Luminescence”, Chapman & Hall: New York, (1993)
[39] P. W. Atkins, “Physical Chemistry-six ed.”, Oxford University Press: Tokyo, (1998)
[40] D. L. Perry, S. L. Phillips, “Handbook of Inorganic Compounds”, 1965
[41] Phosphor Research Society, “Phosphor Handbook”, CRC Press: New York, (1999)
[42] 蘇鏘,“稀土元素”,清華大學出版社:北京,(2000)
[43] “材料產業暨稀土材料發展研討會論文集”;工研院編印,新竹,(1994)
[44] 中國電器股份有限公司網站:http://www.tai.com.tw/
[45] 許招庸,”現代照明實務”,全華科技圖書,(1998)
[46] T. Justel, H. Nikol and C. Ronda, Angew. Chem. Int. Ed. 37, 3084 (1998)
[47] W. A. Thornoton, J. Opt. Soc. Am. 61, 1155 (1971)
[48] M. Koedam and J. Opstelten, Lighting Res. Technol. 3, 205 (1971)
[49] G. Blasse, “Energy transfer in oxidic phosphors”, Philip Res. Rep., 24, 131 (1969)
[50] 劉如熹、紀喨勝,”紫外光發光二極體用螢光粉介紹”,全華科技圖書,(2003)