簡易檢索 / 詳目顯示

研究生: 阮氏美姮
Nguyen Thi, My-Hang
論文名稱: 缺氧誘導YAP活化與黏著斑周轉貢獻於間質型三陰性乳癌細胞之移行
Hypoxia-induced YAP activation and focal adhesion turnover contribute to mesenchymal triple-negative breast cancer cell migration
指導教授: 邱文泰
Chiu, Wen-Tai
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 58
中文關鍵詞: 缺氧缺氧誘導因子 1YAP黏著斑間質三陰性乳癌細胞遷移
外文關鍵詞: Hypoxia, HIF-1α, YAP, Focal adhesion, Mesenchymal Triple-negative Breast Cancer, Cell migration
ORCID: https://orcid.org/ 0000-0002-5330-816X
相關次數: 點閱:44下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 乳癌為女性最常見的癌症,同時也是世界上癌症造成相關死亡的第二位。三陰性乳癌(TNBC)佔所有乳癌的15-30%,其定義為同時缺乏動情激素受體(ER)、黃體激素受體(PR)和人類表皮因子受體2(HER2)的乳癌,三陰性乳癌患者相較於其他乳癌亞型,具有不良預後且高風險復發率。缺氧是實質固態瘤的共同特徵,增加了癌症的侵襲性和轉移潛力,並與大多數類型癌症的不良結果有關。缺氧誘導因子1α(HIF-1α)在缺氧而觸發的細胞機制中扮演關鍵角色;轉錄調節因子YAP受Hippo訊息路徑的負調控,對於發育、生理和腫瘤發生有著至關重要的作用。在本研究中,我們聚焦於缺氧對於三陰性乳癌細胞之HIF-1α和YAP信號傳導的影響。我們透過處理CoCl2或者1% O2缺氧槽培養細胞來執行細胞之缺氧條件,半定量共軛焦顯微造影用於評估缺氧下HIF-1α和YAP核易位的表達和比例。我們發現在高細胞密度下,缺氧會誘導YAP核易位;接下來,我們使用transwell檢視細胞功能,在CoCl2誘導的缺氧條件下會顯著增加間質三陰性乳癌細胞的遷移。此外,我們證明了使用了熟知的YAP抑制劑Verteporfin(VP)處理細胞可以顯著減少缺氧狀態下的細胞遷移,這表明YAP可能參與缺氧誘導的細胞遷移。另外,以2維空間單細胞遷移實驗證明,在缺氧環境下之間質三陰性乳癌細胞中具有更大的淨距離細胞遷移,而有趣的是VP作用顯著減少了此細胞遷移的距離。這些數據支持YAP是缺氧條件下促進間質三陰性乳癌細胞遷移所必需。長期以來,黏著斑被認為在調節細胞遷移中扮演一個重要角色,因為它們是位於細胞基底的大型蛋白質複合體,構成細胞外基質與細胞骨架之間的物理聯繫。透過全內反射螢光(TIRF)顯微鏡術顯示,在缺氧條件下僅有間質三陰性乳癌細胞之細胞膜周圍上的黏著斑顯著增加。更進一步,我們還證明了在缺氧條件下,細胞處理VP將會降低細胞前緣黏著斑的表達,這個結果高度支持先前的發現,即缺氧會增加細胞遷移。總結來說,我們的數據指出缺氧或HIF-1α過度表達,接續誘導YAP核易位並調節間質三陰性乳癌細胞的遷移。最後,如上述研究提供有力證據表明YAP可能與缺氧條件下的細胞遷移呈正相關,未來進一步探索在缺氧條件下操作YAP可能有助於克服或預防三陰性乳癌的進展。

    Breast cancer is the most common cancer in women and the second leading cause of cancer-related deaths in the world. Triple-negative breast cancer (TNBC) occupies 15-30% of all types of breast cancer and it is defined by the lack of three receptors including estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2). TNBC patients are associated with a poor prognosis and the risk of recurrence is higher than that of other types of breast cancer. Hypoxia is a common characteristic of solid tumors and related to poor outcomes in most cancer types, increasing the aggressiveness and metastatic potential of a cancer. Hypoxia-inducible factor 1α (HIF-1α) plays a key role in cellular mechanisms triggered in response to hypoxia. The transcriptional regulator yes-associated protein (YAP) plays a vital role in development, physiology, and tumorigenesis that is negatively regulated by Hippo pathway. In this study, we focus on the effect of hypoxia on HIF-1α and YAP signaling in TNBC. We performed hypoxia conditions by treatment CoCl2 or 1% O2 hypoxia chamber incubation for the cell. Semi-quantification confocal imaging of the nuclear translocation of HIF-1α and YAP has been used to evaluate their expression and proportion under hypoxia. We found hypoxia-induced YAP nuclear translocation in a high cell density. Next, we examined the cell function and discovered a significantly increased cell migration in mesenchymal TNBC cell under CoCl2 mediated hypoxia based on transwell assay. Furthermore, we demonstrated that treatment the cell with Verteporfin (VP), a well-known YAP inhibitor, could strongly decrease cell migration under hypoxia, suggesting that YAP might be involved in hypoxia-induced cell migration. In addition, 2D-single cell migration demonstrated the cell migration with greater net distance to be observed in mesenchymal TNBC cells under hypoxia. Interestingly, VP markedly reduced the distance of cell migration. These data suggest that YAP is required for mesenchymal TNBC cells migration under hypoxia conditions. It has long been proposed that focal adhesions play an important role in regulating cell migration because they are large protein complexes that are organized at the basal surface of cells and physically connect the extracellular matrix to the cytoskeleton. In keeping with this, the immunofluorescence images revealed that the focal adhesion was significantly enhanced on the peripheral membrane, which was only observed in mesenchymal TNBC cells under hypoxia based on total internal reflection fluorescence (TIRF) microscopy. Moreover, we also demonstrated that cell-treated VP reduced expression of focal adhesion on the leading edge in hypoxia conditions. This finding is highly supported by previous findings that hypoxia increases cell migration. Collectively, our data indicated that hypoxia or HIF-1α overexpressed, which consequently imports YAP nuclear translocation to mediate cell migration in mesenchymal TNBC. Lastly, the above studies strengthen the evidence that YAP might be positively related to cell migration under hypoxia. Further exploration of YAP under hypoxia might help overcome or prevent the progression of TNBC.

    CONTENTS ABSTRACT I 中文摘要 III ACKNOWLEDGEMENTS IV CONTENTS VI Chapter 1 INTRODUCTION 1 1.1. Triple-negative breast cancer (TNBC) 1 1.1.1. Pathogenesis of TNBC 1 1.1.2. Cell migration 2 1.1.3. Cancer metastasis 3 1.2. Yes-associated Protein (YAP) 4 1.2.1. Hippo pathway 4 1.2.2. YAP in cancer 5 1.3. Hypoxia 7 1.3.1 Hypoxia-inducible factor 1-alpha (HIF-1α) 7 1.3.2. Expression of HIF-1α is tightly involved with tumor aggressiveness 7 1.4. Focal adhesion 8 1.5. Hypothesis 9 Chapter 2 MATERIAL AND METHOD 11 2.1. Cell culture 11 2.2. Immunofluorescence staining and confocal microscopy 11 2.3. Western blotting 11 2.4. Cell proliferation assay 12 2.5. Polarity assay 12 2.6. 2D-single cell migration assay 12 2.7. Transwell assay 13 2.8. Wound healing assay 13 2.9. Focal adhesion profile under TIRF microscopy 13 2.10. Statistical analyses 14 Chapter 3 RESULTS 15 3.1. Hypoxia-induced YAP nuclear translocation totally different in variety of breast cell lines 15 3.2. β-catenin and FOXM1 are not involved in hypoxia-induced YAP nuclear translocation 15 3.3. YAP activation was not required for cell proliferation during hypoxia 16 3.4. Hypoxia mediated YAP nuclear accumulation to promote TNBC cell migration 17 3.5. Hypoxia promoted single-cell migration but did not affect collective cell migration in TNBC cell lines 19 3.6. Hypoxia triggered focal adhesion turnover 20 Chapter 4 DISCUSSION 22 REFERENCES 25 TABLE 33 FIGURES 35

    REFERENCES
    Abdeljaoued, S., Abdeljaoued, S., Bettaieb, I., Nasri, M., Adouni, O., Goucha, Aida, A., Amine, O. E., Boussen, H., Rahal, K., Gamoudi, A., Overexpression of FOXM1 Is a Potential Prognostic Marker in Male Breast Cancer, Oncol Res Treat., 2017 40(4):167–172.
    Bendinelli, P., Maroni, P., Matteucci, E., Luzzati, A., Perrucchini, G., Desiderio, M. A., Hypoxia inducible factor-1 is activated by transcriptional co-activator with PDZ-binding motif (TAZ) versus WWdomain-containing oxidoreductase (WWOX) in hypoxic microenvironment of bone metastasis from breast cancer, Eur J Cancer., 2013 49(11):2608-2618.
    Bhandari, V., Hoey, C. et al. Molecular landmarks of tumor hypoxia across cancer types, Nat Genet., 2019 51(2):308-318.
    Bianchini, G., Balko, J.M., Mayer, I. A., Sander, M. E., Gianni, L., Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease, Nat Rev Clin Oncol, 2016 13(11): 674–690.
    Boekhorst, V. T., Preziosi, L., Friedl, P., Plasticity of Cell Migration In Vivo and In Silico, Annu Rev Cell Dev Biol, 2016 32:491-526.
    Bos, R., Groep, P. V. D., Greijer, A. E., Shvarts, A., Meijer, S., Pinedo, H.M., Semenza, G. L., Diest, P. J. V., Wall, E. V. D., Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma, Cancer., 2003 97(6): 1573–81.
    Boulter, L., Bullock, E., Mabruk, Z., Brunton, V. G., The fibrotic and immune microenvironments as targetable drivers of metastasis, Br J Cancer., 2021 124(1):27-36.
    Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., Jemal, A., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J Clin., 2018 68(6):394–424.
    Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., Tepper, O. M., Bastidas, N., Kleinman, M. E., Capla, J. M., Galiano, R. D., Levine, J. P., Gurtner, G. C., Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1, Nat Med., 2004 10(8):858-864.
    Chan, S. W., Lim, C. J., Guo, K., Ng, C. P., Lee, I., Hunziker, W. et al., A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells, Cancer Res., 2008 68(8):2592–8.
    Charras, G., Sahai, E., Physical influences of the extracellular environment on cell migration, Nat Rev Mol Cell Biol, 2014 15(12):813-24.
    Chen, Y. T., Chen, Y. F., Chiu, W. T., Wang, Y. K., Chang, H. C., Shen, M. R., The ER Ca2+ sensor STIM1 regulates actomyosin contractility of migratory cells, J Cell Sci., 2013 126(5):1260-1267.
    Chittenden, Y. L., Huang, B., Shim, J. S., Chen, Q., Lee, S. J., Anders, R. A., Liu, J. O., Pan, D., Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP, Genes Dev., 2012 26(12):1300-1305.
    Cramer, L. P., Siebert, M., Mitchison, T. J., Identification of novel graded polaroty actib filament bundles in locomoting heart fibroblasts: Implications for the generation of motile force, J Cell Biol., 1997,136(6):1287–1305.
    Dent, R., Trudeau, M., Pritchard, K. I., Hanna, W. M., Kahn, H. K., Sawka, C. A., Lickley, L. A., Rawlinson, E., Sun, P., Narod, S. A., Triple-Negative Breast Cancer: Clinical Features and Patterns of Recurrence, Clin Cancer Res., 2007 13(15):4429-34.
    Devreotes, P., Horwitz, A. R., Signaling networks that regulate cell migration, Cold Spring Harb Perspect Biol., 2015 7(8):005959.
    Epstein, A. C., Gleadle, J. M., McNeill, L. A., Hewitson, K. S., O’Rourke, J., Mole, D. R. et al., C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation, Cell., 2001 107(1):43–54.
    Foulkes, W. D., Smith, I. E., Reis-Filho, J. S., Triple-negative breast cancer, N Engl J Med., 2010 363(20):1938-48.
    Friedl, P., Gilmour, D., Collective cell migration in morphogenesis, regeneration and cancer, Nat Rev Mol Cell Biol., 2009, 10(10):445-457.
    Friedl, P., Wolf, K., Plasticity of cell migration: a multiscale tuning model, J Cell Biol., 2010 188(1):11-9.
    Galarza, S., Kim, H., Atay, N., Peyton, S. R., Munson, J. M., 2D or 3D? How cell motility measurements are conserved across dimensions in vitro and translate in vivo, Bioeng Transl Med., 2020 5(1):10148.
    Gao, Y., Yang, Y., Yuan, F., Huang, J., Xu, W., Mao, B., Yuan, Z., Bi, W., TNFα-YAP/p65-HK2 axis mediates breast cancer cell migration, Oncogenesis 2017 6(9):383.
    Giorgia, N. et al., YAP regulates cell mechanics by controlling focal adhesion assembly, Nat Commun., 2017 8:15321.
    Gu, J. J., Rouse, C., Xu, X., Wang, J., Onaitis, M. W., Pendergast, A. M., Inactivation of ABL kinases suppresses non-small cell lung cancer metastasis, JCI Insight., 2016 1(21): 89647.
    Hanahan, D., Weinberg, R. A., Hallmarks of cancer: the next generation, Cell., 2011 144(5):646-74.
    Heer, E., Harper, A., Escandor, N., Sung, H., McCormack, V., Fidler-Benaoudia, M., Global burden and trends in premenopausal and postmenopausal breast cancer: a population-based study, Lancet Glob Health, 2020 8(8):1027-1037.
    Helvert, S. V., Storm, C., Friedl, P., Mechanoreciprocity in cell migration, Nat Cell Biol, 2018 20(1):8-20.
    Hickey, M. M., Simon, M. C., Regulation of angiogenesis by hypoxia and hypoxia-inducible factors, Curr Top Dev Biol., 2006 76:217–57.
    Hirota, M., Kitagaki, M., Itagaki, H., Aiba S., Quantitative measurement of spliced XBP1 mRNA as an indicator of endoplasmic reticulum stress, J Toxicol Sci., 2006 31(2):149-56.
    Hu, Y. L., Lu, S., Szeto, K. W., Sun, J., Wang, Y., Lasheras, J. C., Chien, S., FAK and paxillin dynamics at focal adhesions in the protrusions of migrating cells, Sci Rep., 2014 4:6024.
    Jensen, C. C., Casillas, A. L., Clements, A. N.et al., Direct phosphorylation and stabilization of HIF-1α by PIM1 kinase drives angiogenesis in solid tumors, Oncogene., 2021 40(32):5142-5152.
    Jewell, U. R., Kvietikova, I., Scheid, A., Bauer, C., Wenger, R. H., Gassmann, M., Induction of HIF-1alpha in response to hypoxia is instantaneous, FASEB J., 2001 15(7):1312-1314.
    Kallergi, G., Markomanolaki, H., Giannoukaraki, V., Papadaki, M. A., Strati, A., Lianidou, E. S., Georgoulias, V., Mavroudis, D., Agelaki, S., Hypoxia-inducible factor-1alpha and vascular endothelial growth factor expression in circulating tumor cells of breast cancer patients, Breast Cancer Res., 2009 11(6):84.
    Kallio, P. J., Pongratz, I., Gradin, K., McGuire, J., Poellinger, L., Activation of hypoxia-inducible factor 1alpha: posttranscriptional regulation and conformational change by recruitment of the Arnt transcription factor, Proc Natl Acad Sci U S A., 1997 94(11):5667-5672.
    Kandoth, C., Schultz, N., Cherniack, A. D., Akbani, R., Liu, Y., Shen, H., Robertson, A. G., Pashtan, I., Shen, R., Benz, C. C., Yau, C., Laird, P. W., Ding, L., Zhang, W., Mills, G. B., Kucherlapati, R., Mardis, E. R., Levine, D. A., Integrated genomic characterization of endometrial carcinoma, Nature. 2013 497(7447):67-73.
    Kashihara, T., and Sadoshima, J., The role of YAP/TAZ in energy metabolism in the heart, J Cardiovasc Pharmacol., 2019 74(6):483-490.
    Konsavage Jr, W. M. et al., Wnt/β-Catenin Signaling Regulates Yes-associated Protein (YAP) Gene Expression in Colorectal Carcinoma Cells, J Biol Chem., 2012 287(15): 11730–11739.
    Kumar, P., Aggarwal, R., An overview of triple-negative breast cancer, Arch Gynecol Obstet., 2016 293(2):247-69.
    Ladoux, B., Mège, R. M., Trepat, X., Front–Rear Polarization by Mechanical Cues: From Single Cells to Tissues, Trends Cell Biol., 2016 26(6): 420–433.
    Lam, E. W., Gomes, A. R., Forkhead box transcription factors in cancer initiation, progression and chemotherapeutic drug response, Front Oncol., 2014 4:305.
    Lamar, J. M., Stern, P., Liu, H., Schindler, J. W., Jiang, Z. G., Hynes, R. O., The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain, Proc Natl Acad Sci USA., 2012 109:2441–50.
    Laukaitis, C. M., Webb, D. J., Donais, K., Horwitz, A. F., Differential dynamics of {alpha}5 integrin, Paxillin, and {alpha}-actinin during formation and disassembly of adhesions in migrating cells, J. Cell Biol., 2001 153(7):1427-1440.
    Liu, T. et al., The β-catenin/YAP signaling axis is a key regulator of melanoma-associated fibroblasts, Signal Transduct Target Ther., 2019 4:63.
    Lo, C. M., Wang, H. B., Dembo, M., Wang, Y. L., Cell movement is guided by the rigidity of the substrate, Biophys J., 2000 79(1):144-152.
    López-Colomé, A. M. Lee-Rivera, I., Benavides-Hidalgo, R., López, E., Paxillin: a crossroad in pathological cell migration, J Hematol Oncol., 2017 10(1):50.
    Ma, B., Chen, Ya., Chen, L., Cheng, H., Mu, C., Li, J., Gao, R., Zhou, C., Cao, L., Liu, J., Zhu, Y., Chen, Q., Wu, S., Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase, Nat Cell Biol., 2015 17(1):95-103
    MacDonald, B. T., Tamai, K., He, X., Wnt/β-catenin signaling: components, mechanisms, and diseases, Dev. Cell., 2009 17(1):9-26.
    Mason, D. E., Collins, J. M., Dawahare, J. H., Nguyen, T. D., Lin, Y., Voytik-Harbin, S. L. et al., YAP and TAZ limit cytoskeletal and focal adhesion maturation to enable persistent cell motility, J Cell Biol., 2019 218(4):1369–1389.
    Mason, D. E., Collins, J. M., et al., YAP and TAZ limit cytoskeletal and focal adhesion maturation to enable persistent cell motility, J Cell Biol., 2019 218(4): 1369–1389.
    Mayor, R., Etienne-Manneville, S., The front and rear of collective cell migration, Nat Rev Mol Cell Biol, 2016 17(2):97-109.
    Minet, E., Michel, G., Remacle, J., Michiels, C., Role of HIF-1 as a transcription factor involved in embryonic development, cancer progression and apoptosis (review). Int J Mol Med., 2000 5(3):253–259.
    Mizuno, T., Murakami, H., Fujii, M., Ishiguro, F., Tanaka, I., Kondo, Y., Akatsuka, S., Toyokuni, S., Yokoi, K., Osada, H., Sekido, Y., YAP induces malignant mesothelioma cell proliferation by upregulating transcription of cell cycle-promoting genes, Oncogene., 2012 31(49):5117–5122.
    Morganella, S. et al., The topography of mutational processes in breast cancer genomes. Nat Commun, 2016 7:11383.
    Moroishi, T., Park, H. W. et al., A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis, Genes Dev., 2015 29(12):1271-84.
    Nair, P. R., Wirtz, D., Enabling migration by moderation: YAP/TAZ are essential for persistent migration, J Cell Biol., 2019 218 (4):1092–1093.
    Nik-Zainal, S., Davies, H. et al., Landscape of somatic mutations in 560 breast cancer whole-genome sequences, Nature., 2016 534(7605):47-54.
    Noguchi, S. et al., Efficacy of everolimus with exemestane versus exemestane alone in Asian patients with HER2-negative, hormone-receptor-positive breast cancer in BOLERO-2, Breast Cancer. 2014 21(6):703-14.
    Nusse R., Wnt signaling in disease and in development. Cell Res., 2005 15(1):28-32.
    Pan, D. et al., The Hippo signaling pathway in development and cancer, Dev Cell., 2010 19(4):491-505.
    Panciera, T., Azzolin, L., Cordenonsi, M., Piccolo, S., Mechanobiology of YAP and TAZ in physiology and disease, Nat Rev Mol Cell Biol., 2017 18(12):758-770.
    Park, H. W., Kim, Y. C. et al., Alternative Wnt Signaling Activates YAP/TAZ, Cell., 2015 162(4):780-94.
    Park, J. H., Shin, J. E., Park, H. W., The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain, Proc Natl Acad Sci U S A. 2012 109(37):2441-50.
    Park, J. S., Park, S., Y., Shin, E. K.,Lee, S. H.,Kim, Y. H., Lee, D. H., Roh, G. S., Kim, H. J., Sang Soo Kang, S. S., Cho, G. J., Jeong, B. Y., Kim, H. J., Sung Choi, W. S., Hypoxia Inducible Factor-1α Directly Regulates Nuclear Clusterin Transcription by Interacting with Hypoxia Response Elements in the Clusterin Promoter, Mol. Cells, 2014, 37(2): 178-186.
    Plouffe, S. W., Meng, Z., Lin, K. C., Lin, B., Hong, A. W., Chun, J. V., Guan, K. L., Characterization of Hippo pathway components by gene inactivation, Mol Cell., 2016 64(5): 993–1008.
    Poma, A. M., Torregrossa, L., Bruno, R., Basolo, F., Fontanini, G., Hippo pathway affects survival of cancer patients: extensive analysis of TCGA data and review of literature, Sci Rep., 2018 8(1):10623.
    Ponente, M., Campanini, L., Cuttano, R., Piunti, A., Delledonne, G. A., Coltella, N., Valsecchi, R., Villa, A., Cavallaro, U., Pattini, L., Doglioni, C., Bernardi, R., PML promotes metastasis of triple-negative breast cancer through transcriptional regulation of HIF1A target genes, JCI Insight., 2017 2(4):87380.
    Praskova, M., Xia, F., Avruch, J., MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation, Curr Biol., 2008 18(5):311-21.
    Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A., Ginsberg, M. H., Borisy, G., Parsons, J. T., Horwitz, A. R., Cell migration: integrating signals from front to back, Science., 2003 302(5651):1704-1709.
    Rizvi, A. Z., Wong, M. H., Epithelial stem cells and their niche: there's no place like home. Stem Cells Stem Cells., 2005 23(2):150-65.
    Roosmalen, W. V. et al., Tumor cell migration screen identifies SRPK1 as breast cancer metastasis determinant, J Clin Invest., 2015 125(4):1648-64.
    Ryan, H. E., Poloni, M., McNulty, W., Elson, D., Gassmann, M., Arbeit, J. M. et al., Hypoxiainducible factor-1alpha is a positive factor in solid tumor growth, Cancer Res., 2000 60(15):4010–4015.
    Sancho, E., Batlle, E., Clevers, H., Signaling pathways in intestinal development and cancer. Annu. Rev. Cell Dev. Biol., 2004 20:695-723.
    Sang, N., Fang, J., Srinivas, V., Leshchinsky, I., Caro, J., Carboxyl-terminal transactivation activity of hypoxia-inducible factor 1 alpha is governed by a von Hippel-Lindau protein-independent, hydroxylation-regulated association with p300/CBP, Mol Cell Biol., 2002 22(9):2984-2992.
    Sarrió, D., Rodriguez-Pinilla, S. M., Hardisson, D., Cano, A., Moreno-Bueno, G., Palacios, J., Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype, Cancer Res., 2008 68(4):989-97.
    Schito, L., Semenza, G. L., Hypoxia-inducible factors: master regulators of cancer progression, Trends Cancer. 2016 2(12):758–770.
    Shah, S. P., et al., The clonal and mutational evolution spectrum of primary triple-negative breast cancers, Nature. 2012 486(7403):395-9.
    Shen, J., Cao, B., Wang, Y., Ma, C., Zeng, Z., Liu, L., Li X., Tao, D., Gong, J., Xie, D., Hippo component YAP promotes focal adhesion and tumour aggressiveness via transcriptionally activating THBS1/FAK signalling in breast cancer, J Exp Clin Cancer Res., 2018 37(1):175
    Sieg, D. J.; Hauck, C. R., Ilic, D., Klingbeil, C. K., Schaefer, E., Damsky, C. H., Schlaepfer, D. D., FAK integrates growth-factor and integrin signals to promote cell migration, Nat. Cell Biol., 2000, 2(5):249– 256.
    Stein, C., Bardet, A.F., Roma, G., Bergling, S., Clay, I., Ruchti, A., Agarinis, C., Schmelzle, T., Bouwmeester, T., Schübeler, D., Bauer, A., YAP1 Exerts its transcriptional control via TEAD-mediated activation of enhancers. PLoS Genet., 2015 11(8):1005465.
    Stephens, P. J. et al., The landscape of cancer genes and mutational processes in breast cancer, Nature, 2012 486(7403):400-4.
    Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries, CA Cancer J Clin, 2020 71(3):209-249.
    Talks, K. L., Turley, H., Gatter, K. C., Maxwell, P. H., Pugh, C. W., Ratcliffe, P. J., Harris, A.L., The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages, Am J Pathol., 2000 157(2):411-21.
    Tan, Y., Wang, Q., Xie, Y., Qiao, X., Zhang, S., Wang, Y., Yang, Y., Zhang, B., Identification of FOXM1 as a specific marker for triple‑negative breast cancer, Int J Oncol, 2019 54(1): 87–97.
    Thompson, B. J., YAP/TAZ: drivers of tumor growth, metastasis, and resistance to therapy, Bioessays., 2020 42(5):1900162.
    Troester, M. A., Herschkowitz, J. I., Oh, D. S., He, X., Hoadley, K. A., Barbier, C. S., Perou, C. M., Gene expression patterns associated with p53 status in breast cancer, BMC Cancer, 2006 6:276.
    Waks, A. G., Winer, E. P., Breast Cancer Treatment: A Review, JAMA., 2019 321(3):288-300.
    Wang, G. L., Jiang, B. H., Rue, E. A., Semenza, G. L., Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension, Proc Natl Acad Sci USA., 1995 92(12): 5510–5514.
    Wang, J., Rouse, C., Jasper, J. S., Pendergast, A. M., ABL kinases promote breast cancer osteolytic metastasis by modulating tumor-bone interactions through TAZ and STAT5 signaling, Sci Signal, 2016 9:12.
    Wang, Q., Xu, M., Sun, Y., Chen, J., Chen, C., Qian, C., Chen, Y., Cao, L., Xu, Q., Du, X., Yang, W., Gene Expression Profiling for Diagnosis of Triple-Negative Breast Cancer: A Multicenter, Retrospective Cohort Study, Front. Oncol., 2019 9:354
    Wang, Q., Xu, Z., An, Q., Jiang, D., Wang, L., Liang, B. et al., TAZ promotes epithelial to mesenchymal transition via the upregulation of connective tissue growth factor expression in neuroblastoma cells, Mol Med Rep., 2015 11(2):982–8.
    Wang, Y. and Liu, S. W., LncRNA GHET1 Promotes Hypoxia-Induced Glycolysis, Proliferation, and Invasion in Triple-Negative Breast Cancer Through the Hippo/YAP Signaling Pathway, Front Cell Dev Biol., 2021, 9:643515.
    Wang, Y. et al., β-catenin-mediated YAP signaling promotes human glioma growth, J Exp Clin Cancer Res., 2017 36(1):136.
    Wang, Y., Zhang, G., Han, J., HIF1A-AS2 predicts poor prognosis and regulates cell migration and invasion in triple-negative breast cancer, J Cell Biochem., 2019 120(6):10513-10518.
    Webb, D. J., Parsons, J. T., Horwitz, A. F., Adhesion assembly, disassembly and turnover in migrating cells – over and over and over again, Nat Cell Biol., 2002 4(4):97-100.
    Weigelt, B., Peterse, J. L., Veer, L. J. V., Breast cancer metastasis: markers and models, Nat Rev Cancer, 2005 5(8):591-602.
    Wilson, W. R., Hay, M. P., Targeting hypoxia in cancer therapy, Nat Rev Cancer., 2011 11(6):393-410.
    Xiao, H., Jiang, N., Zhou, B., Liu, Q., Du, C., TAZ regulates cell proliferation and epithelial-mesenchymal transition of human hepatocellular carcinoma, Cancer Sci., 2015 106(2):151–9.
    Xu, M. Z., Chan, S. W., Liu, A. M., Wong, K. F., Fan, S. T., Chen, J. et al., AXL receptor kinase is a mediator of YAP-dependent oncogenic functions in hepatocellular carcinoma, Oncogene, 2011 30:1229–40.
    Yamamoto, Y., Ibusuki, M., Okumura, Y., Kawasoe, T., Kai, K., Iyama, K., Iwase, H., Hypoxia-inducible factor 1alpha is closely linked to an aggressive phenotype in breast cancer, Breast Cancer Res Treat., 2008 110(3):465–475.
    Yan, L., Xu, Y., Adoptive Transfer of Myeloid-Derived Suppressor Cells and T Cells in a Prostate Cancer Mode, Bio Protoc., 2015 5(16):1557.
    Yates, L. R. et al., Genomic Evolution of Breast Cancer Metastasis and Relapse, Cancer Cell., 2017 32(2):169-184.
    Yu, F. X., Zhao, B., Guan, K. L., Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer, Cell. 2015 163(4):811-28.
    Zaidel-Bar, R., Ballestrem, C., Kam, Z., Geiger, B., Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells, J Cell Sci., 2003 116(22):4605–4613.
    Zanconato, F. et al., Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth, Nat Cell Biol., 2015 17(9):1218-27.
    Zanconato, F., Cordenonsi, M., Piccolo, S., YAP/TAZ at the Roots of Cancer, Cancer Cell., 2016 29(6):783-803.
    Zhang, L., Yang, S., Chen, X., Stauffer, S., Yu, F., Lele, S. M. et al., The Hippo pathway effector YAP regulates motility, invasion, and castration-resistant growth of prostate cancer cells, Mol Cell Biol., 2015 35(8):1350–62.
    Zhao, B., Wei, X., Li, W., Udan, R. S., Yang, Q., Kim, J. et al., Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control, Genes Dev., 2007 21(21):2747–2761.
    Zhong, H., Marzo, A.M. D., Laughner, E., Lim, M., Hilton D. A., Zagzag, D., Buechler, P., Isaacs, W. B., Semenza G. L., Simons J.W., Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res., 1999 59 (22): 5830-5
    Zhou, Z., Zhu, J. S., Gao, C. P., Li, L. P., Zhou, C., Wang, H. et al., siRNA targeting YAP gene inhibits gastric carcinoma growth and tumor metastasis in SCID mice, Oncol Lett., 2016 11(4):2806–14.
    Zhu, H., Wang, D. D., Yuan, T., Yan, F. J., Zeng, C. M. et al., Multikinase Inhibitor CT-707 Targets Liver Cancer by Interrupting the Hypoxia-Activated IGF-1R-YAP Axis., Cancer Res., 2018 78(14):3995-4006.

    下載圖示 校內:2025-01-26公開
    校外:2025-01-26公開
    QR CODE