| 研究生: |
周緻雅 Chow, Chi-Nga |
|---|---|
| 論文名稱: |
建構植物轉錄因子調控網路與其DNA結合模式 Construction of regulatory networks and DNA binding models for plant transcription factors |
| 指導教授: |
張文綺
Chang, Wen-Chi |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
生物科學與科技學院 - 轉譯農業科學博士學位學程 Graduate Degree Program in Translational Agricultural Sciences |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 轉錄因子 、基因調控網路 、轉錄因子結合位置預測 、轉錄因子與DNA結合特異性 、染色質免疫沉澱測序 、組蛋白標記 |
| 外文關鍵詞: | transcription factors, gene regulatory networks, transcription factor binding site prediction, transcription factors-DNA binding specificity, ChIP-seq, histone marks |
| 相關次數: | 點閱:169 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在植物中,調控因子(包含轉錄因子、組蛋白修飾和其他DNA結合蛋白)可以藉由結合目標基因的DNA來控制基因轉錄活性或染色質重塑。在系統生物學領域中,運用電腦計算技術,預測轉錄因子結合位置是否在目標基因的啟動子上,是建構基因調控網路的普遍方法。然而許多預測結果存在高比例的偽陽性,讓只利用DNA序列作為預測轉錄因子結合位置的模式成為生物資訊預測的瓶頸。為解決此問題,此研究的第一部份著重在整合植物染色質免疫沉澱測序資料與蛋白質資訊,並建立完善的轉錄因子資料庫,命名為PlantPAN 3.0。PlantPAN 3.0資料庫收集了662植物染色質免疫沉澱測序樣品與2,449轉錄因子結合陣列(position weight matrices,PWMs),前者可用於查詢基因體上的調控位置,後者(PWMs)則可運用於預測其他植物啟動子上的轉錄因子結合位置。為了提供使用者更多的轉錄因子結構特性,資料庫新增3D結構與蛋白質結構域(domain)資料。PlantPAN 3.0也收錄多方資料,如: 基因表現量與不同物種間同源基因的資訊,並提供基因共表達分析、跨物種的轉錄因子調控網路比較分析功能。我們希望藉由PlantPAN 3.0來建構複雜的轉錄調控網路,且協助使用者排除偽陽性的預測結果。由於PlantPAN 3.0的染色質免疫沉澱測序資料涵蓋多種轉錄因子與組蛋白修飾,在第二部分的研究,我們藉由收集的測序資料探索轉錄因子結合序列的特異性,同時分析全基因組上轉錄因子結合位點與組蛋白修飾沉積位置的特性。在分析152個阿拉伯芥轉錄因子樣品的定序片段峰區(peak)於基因組上的落點分布後,我們在77%的轉錄因子樣品中發現70%的結合峰區落在蛋白質編碼的基因區與其上下游一千鹼基對的區域,另外約有10%在非基因區、8%在轉座子、12%在其他的非編碼基因上。接著探索蛋白質編碼基因的7個基因區域(例如: 編碼區、5’非轉譯區、3’非轉譯區等),很驚訝地發現大部分的轉錄因子竟少於一半的結合區域落在基因上游一千鹼基對與5’非轉譯區(啟動子區),同樣的分析結果揭露其他區域(如: 下游一千鹼基對的區域和基因編碼區)也存在轉錄因子結合位。與轉錄因子不同,組蛋白修飾有比較高的比例落在蛋白質編碼基因的編碼區上。這些結果暗示轉錄因子與組蛋白利用不同基因區域來調控蛋白質編碼的基因。在轉錄起始與結束位點的上下游兩千五百鹼基對的區間分析也進一步證實這個發現。另一方面,比較不同基因群(如: 管家基因和熱逆境反應基因)的結果顯示,基因上受調控的區塊會隨著轉錄因子與基因功能而有所不同。此外,轉錄因子結合位點在染色體的分布圖說明,轉錄因子的結合區域主要都在染色體臂,真染色質富集的區域。有趣的是,我們在著絲點上發現可能與轉座子的調控相關的轉錄因子結合區間。根據本研究成果,我們提出一個植物轉錄因子多面向的結合特性模型,未來可應用於提高轉錄調控預測之準確性。
In plants, regulatory factors, including transcription factors (TFs), modified histones, and other DNA-binding proteins, control gene transcriptional activity and chromatin remodeling by binding to DNA sequences of target genes. In systems biology, gene regulatory networks are usually reconstructed based on the presence of transcription factor binding sites (TFBSs) on the proximal promoters of target genes by using computational methods. Unfortunately, due to high false-positive rate, TFBSs predicted solely by DNA sequence-based approach has become a bottleneck in bioinformatics predictions. To address this issue, the first part of this study focuses on the construction of a comprehensive database, named as PlantPAN 3.0, for TFs and their regulatory networks by integrating chromatin immunoprecipitation sequencing (ChIP-seq) data, protein information of TFs, etc. In PlantPAN 3.0 system, the genomic regulatory maps and plant promoter sequence analysis were supplied from 662 ChIP-seq samples and 2,449 position weight matrices (PWMs), respectively. To provide more structure characteristics of TFs, the structure-based information and protein sequence annotation (such as functional domains, secondary structures, post-translational modification, and variants, etc.) were newly added into TF/TFBS Search function. Significantly, PlantPAN 3,0 also integrated homologous genes and gene expressions to provide the comparative analysis of transcription regulatory networks across different species and co-expression profiles among A. thaliana, Oryza sativa, Zea mays, and Glycine max. We hope this system can help users to reconstruct complex transcriptional regulatory networks and decrease the false positives in TFBS predictions. Since PlantPAN 3.0 contains several ChIP-seq data of TFs and histone marks of A. thaliana, the investigation of TF-DNA binding specificities and genome-wide binding profiles of TFs and histone marks become available. Thus, in the second part of this study, the TF-DNA binding specificity is characterized in statistical terms by using our collected ChIP-seq data, gene annotation, and genome sequence annotation. Based on the genome-wide ChIP-seq profiles, 77% TF samples show most TFs tend to bind at protein-coding genes and their upstream/downstream 1k bps (over 70% binding peaks), distal intergenic regions (about 10%), transposon fragments (8%), and the other gene types (e.g., ribosomal RNA genes) (12%). Surprisingly, the regulatory regions of protein-coding genes show less than half TF peaks appeared at expected promoter regions (i.e., upstream 1k bps and 5’ UTRs). The result also reveals TF bindings at other genetic regions (e.g., downstream 1k bps, and CDS). In contrast to TFs, both of repressive and activating histone marks tend to be located at CDSs of protein-coding genes. The results suggest that TFs and histone marks use different genetic regulatory regions of protein-coding genes to control gene transcription. This finding was further confirmed by distributions of binding peaks within 5k bps around transcription start sites and transcription terminal sites. The comparisons between different gene groups, such as housekeeping gene and heat stress responsive genes, show that the regulatory regions vary with the regulated TFs and gene functions. Moreover, the chromosomal depositions illustrate that TF binding peaks are predominantly located at chromosome arms, where euchromatin is enriched. Interestingly, the consecutive bins of TF bindings were observed at the centromeres, and associated with transcriptional regulations of TEs. Based on the results of this study, we proposed a plant TF binding specificity model, which might be applied to improve prediction accuracy of transcriptional regulation in the future.
Aghamirzaie, D., Raja Velmurugan, K., Wu, S., Altarawy, D., Heath, L.S., and Grene, R. (2017). Expresso: A database and web server for exploring the interaction of transcription factors and their target genes in Arabidopsis thaliana using ChIP-Seq peak data. F1000Research 6, 372.
Albihlal, W.S., Obomighie, I., Blein, T., Persad, R., Chernukhin, I., Crespi, M., Bechtold, U., and Mullineaux, P.M. (2018). Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b regulates multiple developmental genes under benign and stress conditions. J Exp Bot 69, 2847-2862.
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment search tool. J Mol Biol 215, 403-410.
Andres, F., and Coupland, G. (2012). The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13, 627-639.
Atamian, H.S., and Harmer, S.L. (2016). Circadian regulation of hormone signaling and plant physiology. Plant Mol Biol 91, 691-702.
Berardini, T.Z., Reiser, L., Li, D., Mezheritsky, Y., Muller, R., Strait, E., and Huala, E. (2015). The Arabidopsis information resource: Making and mining the "gold standard" annotated reference plant genome. Genesis 53, 474-485.
Berger, M.F., Philippakis, A.A., Qureshi, A.M., He, F.S., Estep, P.W., 3rd, and Bulyk, M.L. (2006). Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nature biotechnology 24, 1429-1435.
Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E. (2000). The Protein Data Bank. Nucleic Acids Res 28, 235-242.
Boer, D.R., Freire-Rios, A., van den Berg, W.A., Saaki, T., Manfield, I.W., Kepinski, S., Lopez-Vidrieo, I., Franco-Zorrilla, J.M., de Vries, S.C., Solano, R., Weijers, D., and Coll, M. (2014). Structural basis for DNA binding specificity by the auxin-dependent ARF transcription factors. Cell 156, 577-589.
Chen, X., Yu, B., Carriero, N., Silva, C., and Bonneau, R. (2017). Mocap: large-scale inference of transcription factor binding sites from chromatin accessibility. Nucleic Acids Res 45, 4315-4329.
Cheneby, J., Gheorghe, M., Artufel, M., Mathelier, A., and Ballester, B. (2018). ReMap 2018: an updated atlas of regulatory regions from an integrative analysis of DNA-binding ChIP-seq experiments. Nucleic Acids Res 46, D267-D275.
Chien, C.H., Chow, C.N., Wu, N.Y., Chiang-Hsieh, Y.F., Hou, P.F., and Chang, W.C. (2015). EXPath: a database of comparative expression analysis inferring metabolic pathways for plants. BMC Genomics 16 Suppl 2, S6.
Chodavarapu, R.K., Feng, S., Bernatavichute, Y.V., Chen, P.Y., Stroud, H., Yu, Y., Hetzel, J.A., Kuo, F., Kim, J., Cokus, S.J., Casero, D., Bernal, M., Huijser, P., Clark, A.T., Kramer, U., Merchant, S.S., Zhang, X., Jacobsen, S.E., and Pellegrini, M. (2010). Relationship between nucleosome positioning and DNA methylation. Nature 466, 388-392.
Chow, C.N., Zheng, H.Q., Wu, N.Y., Chien, C.H., Huang, H.D., Lee, T.Y., Chiang-Hsieh, Y.F., Hou, P.F., Yang, T.Y., and Chang, W.C. (2016). PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucleic Acids Res 44, D1154-1160.
Covington, M.F., and Harmer, S.L. (2007). The circadian clock regulates auxin signaling and responses in Arabidopsis. PLoS Biol 5, e222.
Crocker, J., Abe, N., Rinaldi, L., McGregor, A.P., Frankel, N., Wang, S., Alsawadi, A., Valenti, P., Plaza, S., Payre, F., Mann, R.S., and Stern, D.L. (2015). Low affinity binding site clusters confer hox specificity and regulatory robustness. Cell 160, 191-203.
Deng, W., Buzas, D.M., Ying, H., Robertson, M., Taylor, J., Peacock, W.J., Dennis, E.S., and Helliwell, C. (2013). Arabidopsis polycomb repressive complex 2 binding sites contain putative GAGA factor binding motifs within coding regions of genes. BMC Genomics 14, 593.
Draizen, E.J., Shaytan, A.K., Marino-Ramirez, L., Talbert, P.B., Landsman, D., and Panchenko, A.R. (2016). HistoneDB 2.0: a histone database with variants--an integrated resource to explore histones and their variants. Database (Oxford) 2016.
Edgar, R., Domrachev, M., and Lash, A.E. (2002). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30, 207-210.
Fan, M., Bai, M.Y., Kim, J.G., Wang, T., Oh, E., Chen, L., Park, C.H., Son, S.H., Kim, S.K., Mudgett, M.B., and Wang, Z.Y. (2014). The bHLH transcription factor HBI1 mediates the trade-off between growth and pathogen-associated molecular pattern-triggered immunity in Arabidopsis. Plant Cell 26, 828-841.
Farnham, P.J. (2009). Insights from genomic profiling of transcription factors. Nat Rev Genet 10, 605-616.
Fernandez-Pozo, N., Menda, N., Edwards, J.D., Saha, S., Tecle, I.Y., Strickler, S.R., Bombarely, A., Fisher-York, T., Pujar, A., Foerster, H., Yan, A., and Mueller, L.A. (2015). The Sol Genomics Network (SGN)--from genotype to phenotype to breeding. Nucleic Acids Res 43, D1036-1041.
Fransz, P., De Jong, J.H., Lysak, M., Castiglione, M.R., and Schubert, I. (2002). Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc Natl Acad Sci USA 99, 14584-14589.
Goodstein, D.M., Shu, S., Howson, R., Neupane, R., Hayes, R.D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N., and Rokhsar, D.S. (2012). Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40, D1178-1186.
Grant, D., Nelson, R.T., Cannon, S.B., and Shoemaker, R.C. (2010). SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res 38, D843-846.
Haberle, V., and Stark, A. (2018). Eukaryotic core promoters and the functional basis of transcription initiation. Nat Rev Mol Cell Biol 19, 621-637.
Higo, K., Ugawa, Y., Iwamoto, M., and Korenaga, T. (1999). Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27, 297-300.
Hume, M.A., Barrera, L.A., Gisselbrecht, S.S., and Bulyk, M.L. (2015). UniPROBE, update 2015: new tools and content for the online database of protein-binding microarray data on protein-DNA interactions. Nucleic Acids Res 43, D117-122.
Hung, Y.C. (2018). Construction of a database for transcription factor binding sites identified by plant chromatin immunoprecipitation sequencing (ChIP-seq) experiments. In Institute of Tropical Plant Sciences (National Cheng Kung University), pp. 74.
Immink, R.G., Pose, D., Ferrario, S., Ott, F., Kaufmann, K., Valentim, F.L., de Folter, S., van der Wal, F., van Dijk, A.D., Schmid, M., and Angenent, G.C. (2012). Characterization of SOC1's central role in flowering by the identification of its upstream and downstream regulators. Plant Physiol 160, 433-449.
Jin, J., Tian, F., Yang, D.C., Meng, Y.Q., Kong, L., Luo, J., and Gao, G. (2017). PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 45, D1040-D1045.
Kel, A.E., Gossling, E., Reuter, I., Cheremushkin, E., Kel-Margoulis, O.V., and Wingender, E. (2003). MATCH: A tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Res 31, 3576-3579.
Kersey, P.J., Allen, J.E., Allot, A., Barba, M., Boddu, S., Bolt, B.J., Carvalho-Silva, D., Christensen, M., Davis, P., Grabmueller, C., Kumar, N., Liu, Z., Maurel, T., Moore, B., McDowall, M.D., Maheswari, U., Naamati, G., Newman, V., Ong, C.K., Paulini, M., Pedro, H., Perry, E., Russell, M., Sparrow, H., Tapanari, E., Taylor, K., Vullo, A., Williams, G., Zadissia, A., Olson, A., Stein, J., Wei, S., Tello-Ruiz, M., Ware, D., Luciani, A., Potter, S., Finn, R.D., Urban, M., Hammond-Kosack, K.E., Bolser, D.M., De Silva, N., Howe, K.L., Langridge, N., Maslen, G., Staines, D.M., and Yates, A. (2018). Ensembl Genomes 2018: an integrated omics infrastructure for non-vertebrate species. Nucleic Acids Res 46, D802-D808.
Kharchenko, P.V., Tolstorukov, M.Y., and Park, P.J. (2008). Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nature Biotechnology 26, 1351-1359.
Kim, J.B., Kang, J.Y., and Kim, S.Y. (2004). Over-expression of a transcription factor regulating ABA-responsive gene expression confers multiple stress tolerance. Plant Biotechnol J 2, 459-466.
Kim, S., and Shendure, J. (2019). Mechanisms of interplay between transcription factors and the 3D genome. Mol Cell 76, 306-319.
Kodaira, K.S., Qin, F., Tran, L.S., Maruyama, K., Kidokoro, S., Fujita, Y., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2011). Arabidopsis Cys2/His2 zinc-finger proteins AZF1 and AZF2 negatively regulate abscisic acid-repressive and auxin-inducible genes under abiotic stress conditions. Plant Physiol 157, 742-756.
Kodama, Y., Shumway, M., Leinonen, R., and International Nucleotide Sequence Database, C. (2012). The Sequence Read Archive: explosive growth of sequencing data. Nucleic Acids Res 40, D54-56.
Koh, P.W., Pierson, E., and Kundaje, A. (2017). Denoising genome-wide histone ChIP-seq with convolutional neural networks. Bioinformatics 33, i225-i233.
Kubik, S., Bruzzone, M.J., and Shore, D. (2017). Establishing nucleosome architecture and stability at promoters: Roles of pioneer transcription factors and the RSC chromatin remodeler. Bioessays 39.
Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10, R25.
Lehti-Shiu, M.D., Panchy, N., Wang, P., Uygun, S., and Shiu, S.H. (2017). Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families. Biochim Biophys Acta 1860, 3-20.
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., and Genome Project Data Processing, S. (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078-2079.
Liu, J., Feng, L., Li, J., and He, Z. (2015). Genetic and epigenetic control of plant heat responses. Front Plant Sci 6, 267.
Liu, Y., Ma, M., Li, G., Yuan, L., Xie, Y., Wei, H., Ma, X., Li, Q., Devlin, P.F., Xu, X., and Wang, H. (2020). Transcription factors FHY3 and FAR1 regulate light-induced CIRCADIAN CLOCK ASSOCIATED1 gene expression in Arabidopsis. Plant Cell 32, 1464-1478.
Machanick, P., and Bailey, T.L. (2011). MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics 27, 1696-1697.
Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10.
Mathelier, A., Xin, B., Chiu, T.P., Yang, L., Rohs, R., and Wasserman, W.W. (2016). DNA shape features improve transcription factor binding site predictions in vivo. Cell Syst 3, 278-286 e274.
Mathelier, A., Zhao, X., Zhang, A.W., Parcy, F., Worsley-Hunt, R., Arenillas, D.J., Buchman, S., Chen, C.Y., Chou, A., Ienasescu, H., Lim, J., Shyr, C., Tan, G., Zhou, M., Lenhard, B., Sandelin, A., and Wasserman, W.W. (2014). JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res 42, D142-147.
Matys, V., Kel-Margoulis, O.V., Fricke, E., Liebich, I., Land, S., Barre-Dirrie, A., Reuter, I., Chekmenev, D., Krull, M., Hornischer, K., Voss, N., Stegmaier, P., Lewicki-Potapov, B., Saxel, H., Kel, A.E., and Wingender, E. (2006). TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 34, D108-110.
Mei, S., Qin, Q., Wu, Q., Sun, H., Zheng, R., Zang, C., Zhu, M., Wu, J., Shi, X., Taing, L., Liu, T., Brown, M., Meyer, C.A., and Liu, X.S. (2017). Cistrome Data Browser: a data portal for ChIP-Seq and chromatin accessibility data in human and mouse. Nucleic Acids Res 45, D658-D662.
Nicot, N., Hausman, J.F., Hoffmann, L., and Evers, D. (2005). Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56, 2907-2914.
O'Malley, R.C., Huang, S.C., Song, L., Lewsey, M.G., Bartlett, A., Nery, J.R., Galli, M., Gallavotti, A., and Ecker, J.R. (2016). Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165, 1280-1292.
Ohama, N., Sato, H., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2017). Transcriptional regulatory network of plant heat stress response. Trends Plant Sci 22, 53-65.
Olsen, A.N., Ernst, H.A., Leggio, L.L., and Skriver, K. (2005). NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10, 79-87.
Pajoro, A., Madrigal, P., Muino, J.M., Matus, J.T., Jin, J., Mecchia, M.A., Debernardi, J.M., Palatnik, J.F., Balazadeh, S., Arif, M., O'Maoileidigh, D.S., Wellmer, F., Krajewski, P., Riechmann, J.L., Angenent, G.C., and Kaufmann, K. (2014). Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development. Genome Biol 15, R41.
Pujato, M., Kieken, F., Skiles, A.A., Tapinos, N., and Fiser, A. (2014). Prediction of DNA binding motifs from 3D models of transcription factors; identifying TLX3 regulated genes. Nucleic Acids Res 42, 13500-13512.
Quinlan, A.R. (2014). BEDTools: The swiss-army tool for genome feature analysis. Curr Protoc Bioinformatics 47, 11 12 11-34.
Rawat, R., Schwartz, J., Jones, M.A., Sairanen, I., Cheng, Y., Andersson, C.R., Zhao, Y., Ljung, K., and Harmer, S.L. (2009). REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways. Proc Natl Acad Sci U S A 106, 16883-16888.
Roider, H.G., Kanhere, A., Manke, T., and Vingron, M. (2007). Predicting transcription factor affinities to DNA from a biophysical model. Bioinformatics 23, 134-141.
Rose, P.W., Prlic, A., Altunkaya, A., Bi, C., Bradley, A.R., Christie, C.H., Costanzo, L.D., Duarte, J.M., Dutta, S., Feng, Z., Green, R.K., Goodsell, D.S., Hudson, B., Kalro, T., Lowe, R., Peisach, E., Randle, C., Rose, A.S., Shao, C., Tao, Y.P., Valasatava, Y., Voigt, M., Westbrook, J.D., Woo, J., Yang, H., Young, J.Y., Zardecki, C., Berman, H.M., and Burley, S.K. (2017). The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res 45, D271-D281.
Sakai, H., Lee, S.S., Tanaka, T., Numa, H., Kim, J., Kawahara, Y., Wakimoto, H., Yang, C.C., Iwamoto, M., Abe, T., Yamada, Y., Muto, A., Inokuchi, H., Ikemura, T., Matsumoto, T., Sasaki, T., and Itoh, T. (2013). Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics. Plant Cell Physiol 54, e6.
Sakuma, Y., Maruyama, K., Qin, F., Osakabe, Y., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2006). Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci USA 103, 18822-18827.
Schmidt, F., Kern, F., Ebert, P., Baumgarten, N., and Schulz, M.H. (2019). TEPIC 2-an extended framework for transcription factor binding prediction and integrative epigenomic analysis. Bioinformatics 35, 1608-1609.
Silva, P.A., Silva, J.C., Caetano, H.D., Machado, J.P., Mendes, G.C., Reis, P.A., Brustolini, O.J., Dal-Bianco, M., and Fontes, E.P. (2015). Comprehensive analysis of the endoplasmic reticulum stress response in the soybean genome: conserved and plant-specific features. BMC Genomics 16, 783.
Skinner, M.E., Uzilov, A.V., Stein, L.D., Mungall, C.J., and Holmes, I.H. (2009). JBrowse: a next-generation genome browser. Genome Res 19, 1630-1638.
Skubacz, A., Daszkowska-Golec, A., and Szarejko, I. (2016). The role and regulation of ABI5 (ABA-insensitive 5) in plant development, abiotic stress responses and phytohormone crosstalk. Front Plant Sci 7, 1884.
Smith, N.C., and Matthews, J.M. (2016). Mechanisms of DNA-binding specificity and functional gene regulation by transcription factors. Curr Opin Struct Biol 38, 68-74.
Sonnhammer, E.L., and Ostlund, G. (2015). InParanoid 8: orthology analysis between 273 proteomes, mostly eukaryotic. Nucleic Acids Res 43, D234-239.
Souček, P., Pavlů, J., Medveďová, Z., Reinöhl, V., and Brzobohatý, B. (2017). Stability of housekeeping gene expression in Arabidopsis thaliana seedlings under differing macronutrient and hormonal conditions. J Plant Biochem Biot 26, 415-424.
Sullivan, A.M., Arsovski, A.A., Lempe, J., Bubb, K.L., Weirauch, M.T., Sabo, P.J., Sandstrom, R., Thurman, R.E., Neph, S., Reynolds, A.P., Stergachis, A.B., Vernot, B., Johnson, A.K., Haugen, E., Sullivan, S.T., Thompson, A., Neri, F.V., 3rd, Weaver, M., Diegel, M., Mnaimneh, S., Yang, A., Hughes, T.R., Nemhauser, J.L., Queitsch, C., and Stamatoyannopoulos, J.A. (2014). Mapping and dynamics of regulatory DNA and transcription factor networks in A. thaliana. Cell Rep 8, 2015-2030.
Taketa, S., Amano, S., Tsujino, Y., Sato, T., Saisho, D., Kakeda, K., Nomura, M., Suzuki, T., Matsumoto, T., Sato, K., Kanamori, H., Kawasaki, S., and Takeda, K. (2008). Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc Natl Acad Sci U S A 105, 4062-4067.
Tanay, A. (2006). Extensive low-affinity transcriptional interactions in the yeast genome. Genome Res 16, 962-972.
Tello-Ruiz, M.K., Naithani, S., Stein, J.C., Gupta, P., Campbell, M., Olson, A., Wei, S., Preece, J., Geniza, M.J., Jiao, Y., Lee, Y.K., Wang, B., Mulvaney, J., Chougule, K., Elser, J., Al-Bader, N., Kumari, S., Thomason, J., Kumar, V., Bolser, D.M., Naamati, G., Tapanari, E., Fonseca, N., Huerta, L., Iqbal, H., Keays, M., Munoz-Pomer Fuentes, A., Tang, A., Fabregat, A., D'Eustachio, P., Weiser, J., Stein, L.D., Petryszak, R., Papatheodorou, I., Kersey, P.J., Lockhart, P., Taylor, C., Jaiswal, P., and Ware, D. (2018). Gramene 2018: unifying comparative genomics and pathway resources for plant research. Nucleic Acids Res 46, D1181-D1189.
Tsai, Z.T., Shiu, S.H., and Tsai, H.K. (2015). Contribution of sequence motif, chromatin state, and DNA structure features to predictive models of transcription factor binding in yeast. PLoS Comput Biol 11, e1004418.
Ueda, M., and Seki, M. (2020). Histone modifications form epigenetic regulatory networks to regulate abiotic stress response. Plant Physiol 182, 15-26.
UniProt, C. (2015). UniProt: a hub for protein information. Nucleic Acids Res 43, D204-212.
Wang, J., Zhuang, J., Iyer, S., Lin, X.Y., Greven, M.C., Kim, B.H., Moore, J., Pierce, B.G., Dong, X., Virgil, D., Birney, E., Hung, J.H., and Weng, Z. (2013). Factorbook.org: a Wiki-based database for transcription factor-binding data generated by the ENCODE consortium. Nucleic Acids Res 41, D171-176.
Wang, L., Ma, K.B., Lu, Z.G., Ren, S.X., Jiang, H.R., Cui, J.W., Chen, G., Teng, N.J., Lam, H.M., and Jin, B. (2020). Differential physiological, transcriptomic and metabolomic responses of Arabidopsis leaves under prolonged warming and heat shock. BMC Plant Biol 20, 86.
Wang, Z., Shen, Y., Yang, X., Pan, Q., Ma, G., Bao, M., Zheng, B., Duanmu, D., Lin, R., Larkin, R.M., and Ning, G. (2019). Overexpression of particular MADS-box transcription factors in heat-stressed plants induces chloroplast biogenesis in petals. Plant Cell Environ 42, 1545-1560.
Watkins, X., Garcia, L.J., Pundir, S., Martin, M.J., and UniProt, C. (2017). ProtVista: visualization of protein sequence annotations. Bioinformatics 33, 2040-2041.
Weirauch, M.T., Yang, A., Albu, M., Cote, A.G., Montenegro-Montero, A., Drewe, P., Najafabadi, H.S., Lambert, S.A., Mann, I., Cook, K., Zheng, H., Goity, A., van Bakel, H., Lozano, J.C., Galli, M., Lewsey, M.G., Huang, E., Mukherjee, T., Chen, X., Reece-Hoyes, J.S., Govindarajan, S., Shaulsky, G., Walhout, A.J.M., Bouget, F.Y., Ratsch, G., Larrondo, L.F., Ecker, J.R., and Hughes, T.R. (2014). Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158, 1431-1443.
Wilson, K.A., Kellie, J.L., and Wetmore, S.D. (2014). DNA-protein pi-interactions in nature: abundance, structure, composition and strength of contacts between aromatic amino acids and DNA nucleobases or deoxyribose sugar. Nucleic Acids Res 42, 6726-6741.
Yevshin, I., Sharipov, R., Valeev, T., Kel, A., and Kolpakov, F. (2017). GTRD: a database of transcription factor binding sites identified by ChIP-seq experiments. Nucleic Acids Res 45, D61-D67.
Yu, J., Jung, S., Cheng, C.H., Ficklin, S.P., Lee, T., Zheng, P., Jones, D., Percy, R.G., and Main, D. (2014). CottonGen: a genomics, genetics and breeding database for cotton research. Nucleic Acids Res 42, D1229-1236.
Yu, X., Lin, J., Masuda, T., Esumi, N., Zack, D.J., and Qian, J. (2006). Genome-wide prediction and characterization of interactions between transcription factors in Saccharomyces cerevisiae. Nucleic Acids Res 34, 917-927.
Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., and Liu, X.S. (2008). Model-based analysis of ChIP-Seq (MACS). Genome Biol 9, R137.
Zhou, K.R., Liu, S., Sun, W.J., Zheng, L.L., Zhou, H., Yang, J.H., and Qu, L.H. (2017). ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data. Nucleic Acids Res 45, D43-D50.
Zhou, Q.Y., Tian, A.G., Zou, H.F., Xie, Z.M., Lei, G., Huang, J., Wang, C.M., Wang, H.W., Zhang, J.S., and Chen, S.Y. (2008). Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J 6, 486-503.
校內:2025-08-01公開