| 研究生: |
吳彬豪 Wu, Pin-Hao |
|---|---|
| 論文名稱: |
探討不同施肥種類與降雨酸鹼值對幾種台灣典型農業土壤中營養鹽滲漏特性之影響 The effects of leached characteristics of nutrients in several typical argicultural soils by using different fertilizers and rainfall pH |
| 指導教授: |
高銘木
Kao, Ming-Muh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 滲漏、肥料、降雨、氮、磷 |
| 外文關鍵詞: | leaching, fertilizer, rainfall, nitrogen, phosphorus |
| 相關次數: | 點閱:106 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究主要以兩種不同種類肥料之施用搭配模擬兩種降雨型態,以管柱淋洗方式,針對台灣地區典型農業土壤進行營養成分滲漏之理化特性分析。
結果顯示將軍系、秀佑系、太康系、成功系及老埤系之滲漏液硝酸氮累積滲漏濃度皆在5 mg/L以下,而重金屬污染土在酸雨淋洗時之滲漏量卻可高達85.2 mg/L;在總氮累積滲漏濃度方面,各土系於添加液肥及添加糞肥後,在一般降雨情況下,滲漏液之滲漏濃度分別介於29.68~125.99 mg/L與18.85~85.11 mg/L之間,至於在酸雨降雨情況下,滲漏濃度則分別介於18.56~180.98 mg/L與6.37~108.45 mg/L之間;另外在總磷累積滲漏濃度方面,粗質地之將軍系可高達10 mg/L左右,而秀佑系及重金屬污染土亦可達1~2 mg/L,其餘土系之滲漏濃度則多半少於1 mg/L。經TN、TP累積滲漏濃度與土壤原始理化性質進行相關性分析後,得知主要影響TN滲漏量多寡之因子為土壤原始pH值,而TP滲漏量則多與砂粒及黏粒含量有關。
淋洗試驗後發現土壤中營養成分皆有流失情形發生,在TN流失率方面,不論何種降雨型態,皆以施用液肥時較為嚴重,此應與液態肥料之水溶性及有效性較佳,故土壤對其滯留性相對較差有關;至於TP的流失情形,由各土系淋洗前後TP剩餘量之差異可知,在酸雨進流時,各實驗組別的TP流失情形較一般降雨進流時嚴重。
淋洗試驗前後土壤基本性質之差異如下:淋洗後之有機質含量大多有減少的情況,尤其是在保水力較差之供試土壤;淋洗前後pH值並不會產生過大的變動;淋洗後電導度有明顯下降趨勢;除重金屬污染土以外,其餘土系在淋洗後之CEC皆降低。
Abstract
This research main focused on the variances of physical and chemical characteristics after nutrient leaching from several agricultural soils in Taiwan. The experiment was proceeded to investigate the effects of applying two kinds of fertilizer and rainfall type by using simulative soil column.
The results indicated that the accumulative concentration of nitrate-nitrogen of leachates from Chang-chun series, Hsiu-yu series, Tai-kang series, Cheng-kung series and Lao-pi series were all below 5mg/L, but the value was reached to 85.2 mg/L in the soil was polluted by heavy metals. However, the accumulative concentration of total nitrogen of leachates from different soils were 29.68 to 125.99 mg/L and 18.85 to 85.11 mg/L by applying liquid fertilizer and manure under general rainfall, respectively. Nevertheless, when we used the acid rain as the entered flow, the values were 18.56 to 180.98 mg/L and 6.37 to 108.45 mg/L with two kinds of fertilizer. On the accumulative concentration of total phosphorus of leachates, we found it was reached to 10 mg/L in Chang-chun series. The soils with coarse soil texture (e.g. Hsiu-yu series and heavy metal-polluted soil) were only 1 to 2 mg/L, and others were even lower. After the correlative analysis with different physi-chemical properties in the test soils and leached concentration, we could understand the main factors of affecting the accumulative concentration of total nitrogen was soil pH and total phosphorus concentration was influenced by sand and clay content of soils.
We found a portion of nutrients were lost from soil after leaching. In the leached rate of total nitrogen, the liquid fertilizer-applied would cause extreme loss after leaching under two kinds of rainfall. It might due to the higher water-solublility and effectiveness. In the other hand, the leached rates of total phosphorus showed more serious loss under acid rain than general rainfall.
After the leaching experiments, the soil physi-chemical characteristics had changed as following statements: The organic matter content was decreased, especially in the soils with lower water retention capacity. Soil pH was not appeared significant variances and the EC was showed the drop tendency. The cation exchange capacity of soils was almost decreased, except for heavy metal-polluted soil.
參考文獻
中華土壤肥料學會,土壤分析手冊,1995。
中華土壤肥料學會,肥料要覽,行政院農業委員會出版,第62-66頁,2001。
王一雄、陳尊賢、李達源,土壤資源利用與保育,國立空中大學發行,第191-206頁,2001。
台灣糖業研究所化驗服務中心,土壤肥力測定方法,第5-41頁,1993。
行政院環境保護署環境檢驗所,土壤檢測方法,http://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=SOIL。
行政院環境保護署環境檢驗所,水質檢測方法,http://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=WATER。
行政院環境保護署,以生態工法去除水庫集水區營養源研究計畫,2005。
李怡真,山葵園非點源污染負荷模式之研究,國立成功大學環境工程研究所碩士論文,2003。
吳致良,茶園非點源地表逕流與滲漏水污染負荷模式之研究,國立成功大學環境工程研究所碩士論文,2004。
吳添益、陳仁炫,不同禽畜糞堆肥的施用對土壤肥力及苦瓜生育的影響,台灣農業化學與食品科學,42(4),242-250,2004。
盛澄淵,肥料學,國立編譯館出版,第43-45頁,1992。
陳振鐸,基本土壤學,財團法人徐氏基金會出版,1992。
陳仁炫,有機質肥料的添加對土壤磷有效性及礦化作用之影響,中華農業化學會誌,33,533-549,1995。
溫清光,曾文水庫水質調查及改善計畫,經濟部水利處南區水資源局,2001。
楊淞富,深耕翻轉與酸洗對污染農地中重金屬之去除效率及肥力之影響,國立成功大學環境工程研究所碩士論文,2005。
謝昭賢,牧草地管理措施對逕流特性及水質之影響,國立中興大學水土保持研究所博士論文,1999。
謝清洲,塔塔加地區不同植被下土壤離子濃度隨季節之變化與模擬酸雨對土壤陽離子淋溶之影響,國立台灣大學農業化學研究所碩士論文,2001。
Adams, P.L., T.C. Daniel, D.R. Edwards, D.J. Nichols, D.H. Pote and H.D. Scott. Poultry litter and manure contributions to nitrate leaching through the vadose zone. Soil Science Society of America Journal 58 (4), 1206–1211, 1994.
Addiscott, T.M., A.P. Whitmore and D.S. Powlson. Farming, Fertilizers and the Nitrate Problem. CAB International, Wallingford, Oxfordshire, UK, 1991.
Amtsblatt der Europäischen Gemeinschaft, Richtlinie 2000/60/EG des Europäischen Parlaments und des Rates vom 23. Okt. 2000 zur Schaffung eines Ordnungsrahmens für Maβnahmen der Gemeinschaft im Bereich Wasserpolitik (Wasserrahmeichtlinie).
Atalay, A., Variation in phosphorus sorption with soil particle size. Soil Sediment Contam. 10, 317–335, 2001.
Bergström, L. and R. Johansson. Leaching of nitrate from monolith lysimeters of di.erent types of agricultural soils. Journal of Environmental Quality 20 (4), 801–807, 1991.
Bijay, S., Y. Singh and G.S. Sekhon. Fertilizer-N use efficiency and nitrate pollution of groundwater in developing countries. Journal of Contaminant Hydrology 20, 167-184, 1995.
Brown, K.W., J.C. Thomas and R.L. Duble. Nitrogen source effect on nitrate and ammonium leaching and runoff losses from greens. Agron. J. 74, 947–950, 1982.
Bruno, B. and J.T. Ritchie. Impact of compost, manure and inorganic fertilizer on nitrate leaching and yield for a 6-year maize–alfalfa rotation in Michigan. Agriculture, Ecosystems and Environment 108, 329–341, 2005.
Chang, C. and T. Entz. Nitrate leaching losses under repeated cattle feedlot manure applications in Southern Alberta. Journal of Environmental Quality 25 (1), 145–153, 1996.
Cindy, M.C., L. Gove, F.A. Nicholson, H.F. Cook and A.J. Beck. Effect of drying and composting biosolids on the movement of nitrate and phosphate through repacked soil columns under steady-state hydrological conditions. Chemosphere 44, 797-804, 2001.
Doran, J.W., D.C. Coleman, D.F. Bezdicek, and B.A. Stewart. Defining Soil Quality for a Sustainable Environment. Soil Science Society of America, Madison, 1994.
Elrashidi, M.A., A.K. Alva, Y.F. Huang, D.V. Calvert, T.A. Obreza and Z.L. He. Accumulation and downward transport of phosphorus in Florida soils and relationship to water quality. Commun. Soil Sci. Plant Anal. 32, 3099–3119, 2001.
Environment Agency, Japan. Annual Report on the Environment (Details) 2000. Gyousei, Tokyo, Japan (in Japanese), 1999.
Ersahin, S., Assessment of spatial variability in nitrate leaching to reduce nitrogen fertilizers impact on water quality. Agric. Water Manage. 48, 179–189, 2001.
Feng, Y.W, I. Yoshinaga, E. Shiratani, T. Hitomi and H. Hasebe. Characteristics and behavior of nutrients in a paddy field area equipped with a recycling irrigation system. Agricultural Water Management 68, 47-60, 2004.
Follet, T. H. B., C. V. Cole and J. F. Power. Soil fertility and organic matter as critical components of production system. Published by ASA, CSSA, SSSA, Madison, Wisconsin, 1987.
Gillian, J.W., T.J. Logan and F.E. Broadbent. Fertilizer use in relation to the environment. In: Engelstad, O.P. (Ed.), Fertilizer Technology and Use, third ed. SSSA, Madison, WI, pp. 561–588, 1985.
Goulding, K., Nitrate leaching from arable and horticultural land. Soil Use Manage. 16, 145–151, 2000.
Gregorich, E.G., M.R. Carter, D.A. Angers, C.M. Monreal, and B.H. Ellert. Towards a minimum data set to assess soil organic matter quality in agricultural soils. Can. J. Soil Sci. 74:367-385, 1994.
Harris, W.G., R.D. Rhue, G. Kidder, R.B. Brown and R. Littell, Phosphorus retention as related to morphology of sandy coastal plain soil materials. Soil Sci. Soc. Am. J. 60, 1513–1521, 1996.
Heckrath, G., P.C. Brooks, P.R. Poulton and K.W.T. Goulding. Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk Experiment. J. Environ. Qual. 24, 904-910, 1995.
Hesketh, N. and P.C. Brookes. Development of an indicator for risk of phosphorus leaching. J. Environ. Qual. 29, 105–110, 2000.
Hue, N.V., I. Amien and J. Hansen. Aluminum detoxification with green manures. Commun. In Soil Sci. Plant Anal. 20, 1499-1511, 1989.
Jakobson, S.T., Leaching of nutrients from pots with and without applied compost. Resources, Conservation and Recycling 17, 1-11, 1996.
James, D.W., J. Hotuby-Amacher, G.L. Anderson and D.A. Huber. Phosphorus mobility in calcareous soils under heavy manuring. J. Environ. Qual. 25, 770-775, 1996.
Ju, X.T. and F.S. Zhang. Nitrate accumulation and its implication to environment in north China. Ecol. Environ. 12 (1), 24–28 (in Chinese with English abstract), 2003.
Katou, H., Time scale for nitrate transport in soil. In: Proceedings of the 21st Symposium on Agro-Environmental Science: Agricultural Activities and the Carbon and Nitrogen Cycling in the Global Area. Tsukuba, Japan, pp. 35–39 (in Japanese), 2001.
Keeney, D.R. and T.H. DeLuca. Des Moines river nitrate in relation to watershed agricultural practices: 1945 versus 1980s. J. Environ. Qual. 22, 267–272, 1993.
Kleinman, P.J.A., R.B. Bryant, W.S. Reid, A.N. Sharpley and D.Pimentel. Using soil phosphorus behavior to identify environmental thresholds. Soil Sci. 165, 943–950, 2000.
Leclerc, B., P. Georges, B. Cauwel and D. Lairon. A five year study on nitrate leaching under crops fertilised with mineral and organic fertilisers in lysimeters. Biol. Agric. Hortic. 11, 301–308, 1995.
Lievine, S.L. and D.W. Schindler. Phosphorus, nitrogen and carbon dynamics of Experimental Lake 303 during recovery from eutrophication. Can. J. Fish Aquat. Sci. 46, 2–10, 1989.
Marshall, S.B., M.D. Mullen, M.L. Cabrera, C.W. Wood, L.C. Braun and E.A. Guertal. Nitrogen budget for fescue pastures fertilized with broiler litter in Major Land Resource Areas of the southeastern US. Nutr. Cycl. Agroecosys. 59, 75–83, 2001.
Martin, E.C., T.L. Loudon, J.T. Ritchie and A. Werner. Use of drainage lysimeters to evaluate nitrogen and irrigation management strategies to minimize NO3–N leaching in maize production. Trans. ASAE 37, 79–83, 1994.
Matson, P.A., W.J. Parton, A.G. Power and, M.J. Swift. Agricultural intensification and ecosystem properties. Science 277, 504–509, 1997.
McDowell, R.W., A.N. Sharpley, L.M. Condron, P.M. Haygarth and P.C. Brookes. Processes controlling soil phosphorus release to runoff and implications for agricultural management. Nutr. Cycl. Agroecosys. 59, 269–284, 2001.
Morihiro, M., B. Zhao, Y. Ozaki and T. Yoneyama. Nitrate leaching in an Andisol treated with different types of fertilizers. Environmental Pollution 121, 477–487, 2003.
Piccolo, A. and J. S. C. Mbagwu. Effects of different organic waste amendments on soil microaggregates stability and molecular sizes of humic substances. Plant Soil 123, 27-37, 1990.
Quiroga-Garza, H.M., G.A. Picchioni and M.D. Remmenga. Bermudagrass fertilized with slow-release nitrogen sources. I. Nitrogen uptake and potential leaching losses. J. Environ. Qual. 30, 440–448, 2001.
Rasse, D.P., J.T. Ritchie, W.R. Peterson, T.L. Loudon and E.C. Martin. Nitrogen management impacts on yield and NO3–N leaching in inbred maize systems. J. Environ. Qual. 28, 1365–1371, 1999.
Ritter, W.F., Nitrate leaching under irrigation in the United States—a review. J. Environ. Sci. Health A 24, 349–378, 1989.
Sharpley, A.N. and R.G. Menzel. Impact of soil and fertilizer phosphorus on the environment. Adv. Agron. 41, 297–324, 1987.
Shuman, L.M., Phosphate and nitrate movement through simulated golf greens. Water Air Soil Pollut. 129, 305–318, 2001.
Shuman, L.M., Fertilizer source effects on phosphate and nitrate leaching through simulated golf greens. Environmental Pollution, 125, 413-421, 2003
Smith, S. J., L. B. Young and G. E. Miller. Evaluation of Soil nitrogen mineralization potentials under modified field condition. Soil Sci. Soc. Am. J. 41, 74-76, 1977.
Stamatiadis, S., M. Werner and M. Buchanan. Field assessment of soil quality as affected by compost and fertilizer application in a broccoli field (San Benito County, California). Appl. Soil Ecol. 12, 217-225, 1999.
Starrett, S.K., N.E. Christians and T.A. Austin. Fate of amended urea in turfgrass biosystems. Commun. Soil Sci. Plant Anal. 26, 1595–1606, 1995.
Stevenson, F.J. Humus Chemistry. John Wiley & Sons, Somersel, NY, p.17, 1982.
Tester, C. F., Organic amendment affects on physical and chemical properties of a sandy soil. Soil Sci. 66, 601-613, 1986.
Thomsen, I.K., J.F. Hansen, V. Kjellerup and B.T. Christensen. Effects of cropping systemand rates of nitrogen in animal slurry and mineral fertilizer on nitrate leaching from a sandy loam. Soil Use and Management 9 (2), 53–58, 1993.
Tiark, A. E., A. P. Mazurak, and L. Chesnin. Physical and chemical properties of soil associated with heavy application of manure form cattle feedlots. Soil Sci. Soc. Am. Proc. 38, 826-830, 1974.
Turner, B.L. and P.M. Haygarth. Phosphorus forms and concentrations in leachate under four grassland soil types. Soil Sci. Soc. Am. J. 64, 1090–1099, 2000.
Tyson, A., M.L. Dixon and W. Segars. Your Drinking Water: Nitrates Ext. Publ. 819-5. Univ. of Georgia, Athens, GA, USA, 1992.
United State Environmental Protection Agency. WATER QUALITY ASSESSMENT : A Screening Procedure for Toxic and Conventional Pollutants Part 1, 1985
U.S. Department of Agriculture. Nitrate occurrence in U.S. waters (and related questions). USDA, Washington, DC, 1991.
Watts, D.G. and E.C. Martin. Effects of water and nitrogen management on NO3–N leaching loss from sands. Trans. ASAE 24, 911–916, 1981.
Weber, C.R., Nodulating and Nonnodulating Isolines. Agron. Jour. 58, 43-46, 1966.
Westermann, D. T. and S. E. Crothers. Measuring soil nitrogen mineralization under field conditions. Agron. J. 72, 1009-1012, 1980.
Wong, J.W.C., C.W.Y. Chan, K.C. Cheung. Nitrogen and phosphorus leaching from fertilizer applied on golf course: lysimeter study. Water, Air, Soil Pollut. 107, 335–345, 1998.
Zhang, Y.L. Agro-chemistry and Biosphere, Chinese Environment Science Press, Beijing (in Chinese), 1987.
Zhang, F.Z., Z.M. Gao and X.Z. Xiong. A dynamic 15N study on the leaching of nitrogen in soil-plant system and its control. In: Gao, Z.M. (Ed.), Studies on Pollution Ecology of Soil–Plant Systems. China Science and Technology Press, Beijing (in Chinese), pp. 490–502, 1987.
Zhang, H.C., Z.H. Cao, Q.R. Shen and M.H. Wong. Effect of phosphate fertilizer application on phosphorus (P) losses from paddy soils in Taihu Lake Region I. Effect of phosphate fertilizer rate on P losses from paddy soil. Chemosphere 50, 695–701, 2003.