| 研究生: |
張麟嘉 Chang, Lin-Chia |
|---|---|
| 論文名稱: |
丙醯氯在銅(100)和氧/銅(100)表面上的熱化學研究 Thermal Chemistry of Propanoyl Chloride on Cu(100) and O/Cu(100) |
| 指導教授: |
林榮良
Lin, Jong-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 程序控溫反應/脫附(TPR/D) 、反射-吸收紅外光譜(RAIRS) 、X光光電子能譜(XPS) 、Cu(100) 、丙醯氯 |
| 外文關鍵詞: | temperature-programmed reaction/desorption (TPR/D), reflection-absorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS), Cu(100), propanoyl chloride |
| 相關次數: | 點閱:199 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文研究在超高真空系統中,丙醯氯(propanoyl chloride, CH3CH2COCl)在Cu(100)和O/Cu(100)表面的熱化學反應,探討中間態與反應產物。所運用的表面分析技術包括:程序控溫反應/脫附(TPR/D)、反射-吸收紅外光吸收光譜分析(RAIRS) 和X-光光電子能譜(XPS)。
CH3CH2COCl/Cu(100)的熱反應脫附產物主要有hexane-3,4-dione 、 3-hexyne、H2、CO、CO2。由RAIRS及XPS實驗,發現在160 K時C–Cl鍵已完全斷裂,此時表面中間物為CH3CH2CO(ad)、CH3CH2C(O)C(O)CH2CH3(ad),230 K後hexane-3,4-dione脫附,300 K生成3-hexyne,3-hexyne的生成涉及CH3CH2CO斷裂C–O鍵,病因而產生丙酸根(CH3CH2COO),在600 K後H2、CO、CO2產物脫附。
CH3CH2COCl在O/Cu(100) 熱反應脫附產物主要有H2、H2O、CO、CO2、CH3CH2COOH 、 H2C=C=O,RAIRS與XPS研究結果發現CH3CH2COCl在150 K斷C–Cl鍵後與表面上預吸附的氧反應形成丙酸根,450 K發生丙酸根脫氫反應,並產生H2、CO、CO2、H2O、丙酸等產物與中間物,550 K時丙酸根分解生成H2C=C=O、H2、CO、CO2。
Thermal chemistry of propanoyl chloride (CH3CH2COCl) on Cu(100) and O/Cu(100) was studied, using temperature-programmed reaction/desorption (TPR/D), reflection-absorption infrared spectroscopy (RAIRS) and X-ray photoelectron spectroscopy. At 160 K, the RAIRS and XPS results show that a large portion of the adsorbed CH3CH2COCl molecules undergo C–Cl bond cleavage, resulting in the formation of CH3CH2CO(ad) on Cu(100). Hexane-3,4-dione and 3-hexyne are found to be desorbed at 230 K and 310 K, respectively. The formation of 3-hexyne is related to C–O cleavage of CH3CH2CO, and the remaining CH3CH2CO(ad) can combine with the oxygen from the C–O cleavage to generate propanoate (CH3CH2COO). The CH3CH2COO decomposes into H2, CO, and CO2 at ~600 K.
On O/Cu(100), CH3CH2COCl reacts with preadsorbed O to form CH3CH2COO(ad) at ~160 K. The CH3CH2COO(ad) further reacts at ~480 K to form H2, H2O, CO, CO2, and CH3CH2COOH. Some surviving CH3CH2COO groups and its dissociation fragments continue to react at ~550 K, producing H2, CO, CO2, and H2C=C=O.
1. Sormorjai, G., Introduction to Surface Chemistry and Catalysis. A Wiley-Interscience Press, New York 1994.
2. Christmann, K.; Ertl, G.; Pignet, T., Adsorption of Hydrogen on a Pt(111) Surface. Surface Science 1976, 54, 365-392.
3. Giordano, G.; Villa, M.; Annunziata, R., Mild and reversible Friedel-Crafts acylation: synthesis of 6-acyl-2-methoxynaphthalenes. Synthetic Communications 1990, 20, 383-392.
4. Kim, H.-Y.; Li, J.-Y.; Kyungsoo O., Studies on Elimination Pathways of β-Halovinyl Ketones Leading to Allenyl and Propargyl Ketones and Furans under the Action of Mild Bases. The Journal of Organic Chemistry 2012, 77, 11132-11145.
5. Wei, B.-M.; Zhang, Z.-Y.; Dai, Z.-Q., Friedel-Crafts acylation of anisole catalyzed by green, reusable hydroxyapatite-zinc bromide catalyst. Advanced Materials Research 2010, 113, 18-21.
6. Yang, Z.-X.; Chen S.-W.; Lee S.-H.; Chen T.-Y.; Lin J.-L., Comparative Study on the Reaction Pathways of 2‑Chloropropanoic Acid on Cu(100) and O/Cu(100) . The Journal of Physical Chemistry C . 2017, 121, 315-323.
7. Karis, O.; Hasselström, J.; Wassdahl, N.; Weinelt, M.; Nilsson, A.; Nyberg, M.; Pettersson, L.; Stöhr, J.; Samant, M. G., The Bonding of Simple Carboxylic Acids on Cu(110). The Journal of Chemical Physics 2000, 112, 8146-8155.
8. Barteau, M. A.; Bowker, M.; Madix, R. J., Formation and Decomposition of Acetate Intermediates on the Ag(110) Surface. Journal of Catalysis 1981, 67, 118-128.
9. Yuzawa, T.; Shioda, T.; Kubota, J.; Onda, K.; Wada, A.; Domen, K.; Hirose, C.; Polarization Characteristics from SFG Spectra of Clean and Regulatively Oxidized Ni(100) Surfaces Adsorbed by Propionate and Formate. Surface Science 1998, 416, 1090-1094.
10. Yang, X.; He, Z.-H.; Zhou, X.-J.; Xu, S.-H.; Leung, K.-T., Vibrational Eeels and DFT Study of Propionic Acid and Pyruvic Acid on Ni(100): Effects of Keto Group Substitution on Room-Temperature Adsorption and Thermal Chemistry. Applied Surface Science 2006, 252, 3647-3657.
11. Filler, M. A.; Keung, A. J.; Porter, D. W.; Bent, S. F., Formation of Surface-Bound Acyl Groups by Reaction of Acyl Halides on Ge(100)–2×1. The Journal of Physical Chemistry B 2006, 110, 4115-4124.
12. 李思慧,"1-氯-2-丙醇在銅(100)和氧/銅(100)表面上的熱反應研究"國立成功大學化學所碩士論文, 2014.
13. Redhead, P., Thermal Desorption of Gases. Vacuum 1962, 12, 203-211.
14. Vickerman, J., Surface Analysis-the Principle Techniques; Wiley & Sons: New York, 1997.
15. 張沛騰,"2-氟乙醇及1,4-dioxane在Cu(100)表面上的熱反應與吸附位向的研究"國立成功大學化學所碩士論文, 2003.
16. 王伯鼎,"Anthradithiophene與其衍生物在金(111)表面上的薄膜成長之研究"國立清華大學化學所碩士論文, 2009.
17. Sexton, B., Surface Vibrations of Adsorbed Intermediates in the Reaction of Alcohols with Cu(100). Surface Science 1979, 88, 299-318.
18. NIST Chemistry WebBook, http://webbook.nist.gov/chemistry/
19. Li, Z.-F.; Zhang, Y.-M. Samarium diiodide mediated coupling of aroyl chlorides. Chinese Journal of Chemistry 2001, 19, 634-636.
20. Wang, Z.-G.; Miao, Z.-H.; Wang, Y.-C., Method for reparation of 1,2-diketones. Chinese Journal of Chemistry 2018, 36, 376-378.
21. Ying, D. H. S.; Robert, J. M., Thermal Desorption Study of Formic Acid Decomposition on a Clean Cu(110) Surface. Journal of Catalysis 1980, 61, 48-56.
22. Bowker, M.; Madix, R. J., The Adsorption and Oxidation of Acetic Acid and Acetaldehyde on Cu(110). Applications of Surface Science 1981, 8, 299-317.
23. Schulz, K. H.; Cox, D. F., Reaction Pathways of C3 Carboxylates on Copper(1+) Oxide(100): Acrylic and Propionic Acid Decomposition. The Journal of Physical Chemistry 1992, 96, 7394-7398.
24. Lin, H.-P.; Yang, Z. X.; Lee, S.-H.; Chen, T.-Y.; Chen, Y.-J.; Chen, Y.-H.; Chen, G.-J.; Zhan, S.-X.; Lin, J.-L., Adsorption and reactions of propenoic acid and 2-fluoropropanoic acid on Cu(100) and O/Cu(100). The Journal of Chemical Physics 2019, 150, 164703 1-12.
25. Durig, J.-R.; Li, Y.; Shen, S.; Durig, D.-T., Conformation stability and structural parameter of CH3CH2CClO and other (CH3)nCH3-nCClO molecules. Journal of Molecular Structure 1998, 449, 131-157.
26. Spectral Database for Organic Compound, SDBS, https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi
27. Dostert, K.; O’Brien C. P.; Mirabella, F.; Ivars-Barceló, F.; Schauermann S., Adsorption of acrolein, propanal, and allyl alcohol on Pd(111): a combined infrared reflection-absorption spectroscopy and temperature programmed desorption study. Physical Chemistry Chemical Physics 2016, 18, 13960-13973.
28. Roy, J.; Laliberté, M.; Lavoie, S.; Castonguay M.; McBreen P. H., Adsorption states of acetaldehyde and butane-2,3-dione on Ni(111) Surface Science 2005, 578, 43-56.
29. Sexton, B.A.; Hugues A.E., A comparison of weak molecular adsorption of organic molecules on clean copper and platinum surfaces. Surface Science 1984, 140, 227-248.
30. Pylant, E. D.; Hubbard M. J.; White J. M. Thermal and Low-Energy Electron-Driven Chemistry of Biacetyl on Ag(111). Journal of Physical Chemistry. 1996, 100, 15890-15899.
31. Isa, S. A.; Joyner, R. W.; Matloob, M. H.; Roberts, M. W., A Study of the Interaction of Formic Acid and Propionic Acid with Oxidised Lead and Copper Surfaces by Photoelectron Spectroscopy and Leed. Applications of Surface Science 1980, 5, 345-360.