簡易檢索 / 詳目顯示

研究生: 吳展維
Wu, Chan-Wei
論文名稱: 建築物開口部之防火防煙性能研究
Studies on Performances of Fire Prevention and Smoke Barrier for the Building Openings
指導教授: 林大惠
Lin, Ta-Hui
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 187
中文關鍵詞: 開口部遮煙熱釋放率水膜木框架房間火災
外文關鍵詞: openings, smoke barrier, water film, room fire, heat release rate, wood-cribs
相關次數: 點閱:134下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要針對在一般火場環境下,利用所建立之新的技術及設備,來探討建築物開口部之防火性能以及煙氣流動之行為。文中主要以四個章節來加以說明:(1)木框架實體燃實驗分析、(2) 玻璃在水膜作用下之阻熱及防焰性能之研究、(3)實尺度房間火災之防火性能驗證以及(4)開口部之漏煙行為分析。
    在木框架實體燃燒試驗分析研究中,主要針對木框架之燃燒行為及特性進行了解。由於木框架本身燃燒較為穩定,因此在火災模擬研究中都是以木框架作為火源,因此本章節之實驗結果主要作為第四章實尺度房間火災研究之資料庫。本實驗利用ISO 9705 實尺度燃燒分析裝置以及10MW大尺度燃燒分析裝置,針對木框架進行傢俱火災之模擬研究。結果顯示,固態燃料之組成比較複雜,造成燃燒狀況會有所不同,因此實驗過程比較難以控制,需要注意的參數很多,例如木框架之點燃因子,包括點燃位置、時間、燃料以及本身木材烘乾與否;木框架高度、數目等等因素,皆會影響熱釋放率之結果。
    在水膜作用下玻璃之阻熱及防焰性能研究方面,主要利用水膜蒸發潛熱的觀念,應用於兩種0.5cm厚之玻璃(非阻熱型防火玻璃及一般強化玻璃)上,一方面保護開口部之玻璃,使之不致於受到高溫而破裂,而將火災傳遞至相鄰空間,產生火災損失;另一方面也可利用水膜受熱所產生之蒸汽來降低火場周圍環境的溫度。其最終目的就是讓一般強化玻璃本身能夠和防火玻璃一樣具有阻熱性以及防焰性。實驗結果顯示,含水膜之玻璃可以有效地阻絕火場中強烈之熱輻射,並能將原先非阻熱型防火玻璃之阻熱性由6分鐘提升至100分鐘,並維持其遮焰性能。此外,小尺度玻璃表面溫度最高溫度可控制在90℃以下,而全尺度玻璃表面溫度則可以維持在210℃以下。
    在完成小尺度及全尺度之實驗之後,接著以實際尺寸之房間(573cm×420cm×330cm)火災來進行水膜系統功能之驗證,並同時探討水膜系統和一般密閉下噴式之撒水系統兩者之間之差異性,以評估整體水膜含量之多寡對於玻璃表面所受到之對流熱以及熱輻射之吸收及阻擋之影響。結果顯示,水膜系統對於熱(對流熱以及熱輻射)的吸收及阻絕上要比一般撒水系統要來的更有效率,而且更加地省水。因此由研究可以確信,含水膜玻璃之阻熱效能對於未來用於取代防火玻璃或是鐵捲門上,基於性能法規的精神之下其可行性相當地高。
    至於壁面開口之漏煙行為方面,主要開發建立一套遮煙試驗裝置,並配合曝火面4m×4m門牆耐火試驗爐,同時可使加熱溫度和試體兩側之壓差條件具有較大操作範圍;另外為了分析一般開口部之漏煙狀況,則分別針對不同幾何形狀之壁面開口和甲種防火木門來進行漏煙行為之研究。結果顯示,開口部之漏煙率和幾項因素有關,包括試體兩側壓力差( )、煙氣溫度(T1)、開口之幾何形狀(KL)以及開口截面積(A)。對於同一形狀之開口而言,漏煙率和試體兩邊壓差之1/2次方成正比及和煙氣進口溫度的1/2次方成反比。防火木門之漏煙率同樣會隨著壓力增加而增加,且隨著溫度的增加而急遽降低,其壓差控制所能建立的操作範圍會隨著溫度的增加而增加,但在初期之低溫條件時,試體兩邊的壓差只能控制在較小的範圍。

    In this thesis, the main purpose is to investigate the fireproof and smoke barrier characteristics on the openings of the building. And the research is divided into four sections which are wood-cribs full-scale burning analysis, fire insulation and fire integrity of glass panes with down-flowing water film, full-scale evaluations on heat resistance of glass panes incorporated with water film or sprinkler in a room fire and the smoke leakage through wall openings in a fire, respectively.
    In the study of wood-cribs full-scale burning analysis, wood-cribs with the ISO 9705 full-scale and 10MW large-scale fire products collectors are used to simulate the burning situation of the furniture to investigate the ignition characteristics, heat release rates, mass loss rates and exhausts.
    In the study of fire insulation and fire integrity of glass panes with down-flowing water film, based on the standard code of CNS 14815 (ISO 834-1), this study examined the fire-insulation and fire integrity properties of a glass pane covered with a water film. The experimental apparatus included a multi-function refractory furnace, a 3m×3m door/wall refractory furnace, a water supply system, two types of small-scale glass panes (a fireproof glass and a tempered glass of dimensions 100cm×100cm×0.5cm) and two types of full-scale glass panes (a fireproof glass and a tempered glass of dimensions 120cm×240cm×0.5cm). The water film was generated by a multi-nozzle spray system with a buffer box. The results show that when a water film with adequate thickness and flowing speed is established on a glass pane, the evaporative latent heat of the water film could be used to protect the glass from melting or breaking in a fire. In this study, the fire insulation period could be extended to 100 minutes and the temperature of the glass surface was kept below 210oC. The substitution of a common non-fire-insulation tempered glass with water film for the fireproof glass or overhead door has been proven workable.
    After the small-scale and the full-scale tests, a real-scale room (573cm×420cm×330cm) fire test was developed to investigate the performance and the variations of the absorption of convection heat and the resistance of radiation by using either the water film or the closed-pendent-type sprinkler onto the non-heat-resistant fireproof glass panes. The results showed that even if the flow rate of the sprinkler system was 3 times of the water film system, the effective heat resistance was only a third to a half that of the water film system only. Thus, for situations where the available amount of water flow is limited, by using a layer of uniform down-flowing water film with appropriate thickness and velocity, reducing the temperature of the glass surface could be achieved effectively.
    In the study of the smoke leakage through wall openings in a fire, a full-scale smoke-barrier testing device was designed and built up and then used to investigate the smoke leakage characteristics for the wall openings of various geometric shapes, which may be passageway for cables and pipes and are usually of irregular shapes, for different pressure differences and temperatures. In addition, a simple theoretical model was developed to correlate the experiment data. The results showed that the smoke leakage rate was dependent on several factors, including pressure difference, gas temperature, geometric shape and area of opening. The rate of smoke leakage is proportional to the square root of the pressure difference or to the reciprocal of the square root of the upstream gas temperature. An opening of higher perimeter-to-area ratio has higher resistance against smoke flow and thus allows smaller rate of smoke leakage. Besides, a real scale A-class wood-door was also tested its smoke leakage behavior and the results could be used as a standard operation procedure for the smoke leakage test for a fire door.

    總目錄 I 表目錄 V 圖目錄 VI 符號說明 XIII 一、前言 1 1-1 建築物空間之防火安全區劃 1 1-2 建築物開口部之防火特性 3 1-2-1 防火結構之開口部 3 1-2-2 物體表面之阻熱方法 5 1-3 建築物開口部之防煙特性 8 1-3-1 主動遮蔽元件 8 1-3-2 被動遮蔽元件 10 1-4 研究目的 12 二、木框架實體燃燒實驗分析 14 2-1 實驗設備 14 2-2 熱釋放率分析 16 2-3 小尺度木框架燃燒分析 18 2-3-1 單一堆木框架燃燒實驗(W1×15-9705) 18 2-3-2 兩堆木框架燃燒實驗(W2×15-9705) 19 2-4 大尺度木框架燃燒分析 21 2-4-1 三堆引燃一堆模式(W4×20-30Hz) 21 2-4-2 兩堆引燃兩堆模式(W4×20-35Hz) 23 2-4-3 四堆同時引燃模式(W4×20-40Hz) 25 2-5 木框架熱釋放率估算 26 2-6 小結 28 三、玻璃在水膜作用下之阻熱及防焰性能研究 30 3-1 實驗設備及測試 31 3-1-1 燃燒系統 31 3-1-2 供水系統 32 3-2 水膜實驗分析 33 3-2-1 單一噴嘴試驗 33 3-2-2 複合噴嘴試驗 36 3-3 噴水框架之設計與組裝 40 3-4 小尺度玻璃之阻熱及遮焰性能分析 41 3-4-1 無水膜防火玻璃之阻熱及遮焰性能實驗 41 3-4-2 含水膜防火玻璃之阻熱及遮焰性能實驗 43 3-4-3 含水膜一般強化玻璃之阻熱及遮焰性能實驗 46 3-5 全尺度含水膜玻璃之阻熱及遮焰性能分析 48 3-5-1 玻璃及框架表面溫度分佈情形 49 3-5-2 爐內溫度分佈 51 3-6 小結 53 四、實尺度房間火災中水膜系統及撒水頭應用於玻璃上之阻熱及遮焰性能比較 54 4-1 實驗設備及方法 54 4-2 水膜系統及撒水頭 55 4-3 引火源 56 4-4 結果與討論 56 4-4-1 實驗步驟 56 4-4-2 房間內溫度變化 57 4-4-3 玻璃及框架表面溫度分佈 59 4-5 小結 61 五、壁面開口及防火門之漏煙行為分析 62 5-1 實驗設備 63 5-1-1 遮煙試驗裝置 63 5-1-2 曝火面4m×4m大型門牆耐火加熱爐 65 5-2 研究方法 67 5-3 曝火面4m×4m門牆耐火加熱爐之恆溫測試 67 5-4 常溫下遮煙設備之試驗 70 5-5 高溫環境下壁面開口之漏煙行為分析 71 5-5-1 溫度場分析 71 5-5-2 漏煙行為分析 72 5-5-3 漏煙行為理論模式分析 73 5-5-4 開口尺寸和幾何形狀對於漏煙之影響 76 5-6 防火門之漏煙行為分析 77 5-7 小結 79 六、總結 81 七、參考文獻 ……. 84 八、圖表 90

    1. 雷明遠,「建築防火區劃構造、設備之法規標準與應用技術」,建築防火安全國家標準說明會,2002。
    2. UL 10B, “Standard for Fire Tests of Door Assemblies,” Underwriter Laboratory Standards, 2001.
    3. 「建築設計施工篇第七十九條」,建築技術規則,中華民國,2004。
    4. “NFPA 101: Life Safety Code, 2003 Edition” National Fire Protection Association.
    5. Carslaw, H.S. and Jaeger, J.C., “Conduction of Heat in Solid,” Oxford University Press, UK, p. 510, 1959.
    6. Landau, H.G., “Heat Conduction in a Melting Solid,” Quarterly Applied Math., Vol.8, pp. 312-319, 1950.
    7. Sunderland, T.E. and Grosh, R.J., “Transient Temperature in a Melting Solid”, J. Heat Transfer, Vol. 83, pp. 409-419, 1961.
    8. Clark, B.L., “A Parametric Study of the Transient Ablation of Teflon,” J. Heat Transfer, Vol. 94, pp. 347-354, 1972.
    9. Thomas, W.C. and Sunderland, J.E., “Heat Transfer Between a Plane Surface and Air Containing Suspended Water Droplet,” Ind. Eng. Chem. Fundam. Vol. 9, pp. 369-374, 1970.
    10. Aihara, T., Taga, M. and Haraguchi, T., “Heat Transfer from a Uniform Heat Flux Wedge in Air-Water Mist Flows,” Int. J. Heat Mass Transfer, Vol. 22, pp. 51-60, 1979.
    11. Chang, C.J., Lin, T.F. and Yan, W.M., “Natural Convection Flows in a Vertical Open Tube Resulting from Combined Buoyancy Effects of Thermal and Mass Diffusion,” Int. J. Heat Mass Transfer, Vol. 29, pp. 1543-1552, 1986.
    12. Yan, W.M., “Liquid Film Vaporization on Natural Convection Heat and Mass Transfer in a Vertical Tube,” The Canadian Journal of Chemical Engineering, Vol. 70, pp. 452-462.
    13. Yan, W.M., “Binary Diffusion and Heat Transfer in Mixed Convection Pipe Flows with Film Evaporation,” Int. J. Heat Mass Transfer, Vol. 36, pp. 2115-2123, 1993.
    14. Shembarker, T.R. and Pai, B.R., “Prediction of Film Cooling with a Liquid Coolant,” Int. J. Heat Mass Transfer, Vol. 29, pp. 899-908, 1986.
    15. Yan, W.M. and Soong, C.Y., “Numerical Study of Liquid Film Cooling in a Turbulent Gas Stream,” Int. J. Heat Mass Transfer, Vol. 36, pp. 3877-3886, 1993.
    16. Yan, W.M., “Convective Heat and Mass Transfer from a Falling Film to a Laminar Gas Stream,” Warme-und Stoffubertragung, Vol. 29, pp. 79-87, 1993.
    17. Lin, T.F., Chang, C.J. and Yan, W.M., “Analysis of Combined Buoyancy Effects of Thermal and Mass Diffusion on Laminar Forced Convection Heat Transfer in a Vertical Tube,” J. Heat Transfer, Vol. 110, pp. 337-344, 1988.
    18. Chow, L.C and Chung, J.N. “Evaporation of Water into a Laminar Stream of Air and Superheated steam,” Int. J. Heat Mass Transfer, Vol. 26, p. 373, 1983.
    19. Schrippel, J. and Thiele, F., “On the Calculation of Momentum, Heat and Mass Transfer in Laminar and Turbulent Boundary Layer Flows Along a Vaporizing Liquid Film,” Numerical Heat Transfer, Vol. 6, pp. 475-496, 1983.
    20. Haji, M. and Chow, L.C., “Experimental Measurement of Water Evaporation Rates into Air and Superheated steam,” J. Heat Transfer, Vol. 110, pp. 237-242, 1988.
    21. Feddaoui, M., Meftah, H. and Mir, A., “The Numerical Computation of the Evaporative Cooling of Falling Water Film in Turbulent Mixed Convection inside a Vertical Tube,” International Communications in Heat and Mass Transfer, Vol. 33, pp. 917-927, 2006.
    22. Zhang, H.W., Tao, W.Q., He, Y.L. and Zhang, W., “Numerical Study of Liquid Film Cooling in a Rocket Combustion Chamber,” International Journal of Heat and Mass Transfer, Vol. 49, pp. 349-358, 2006.
    23. Curico, T.A. and Petty, C.C., “The near Infrared Absorption Spectrum of Liquid Water,” J. Opt. Soc. Amer. Vol. 41, pp. 302-304, 1951.
    24. Plyler, E.K. and Acquista, N., “Infrared Absorption of Liquid Water from 2 to 42 Microns,” J. Opt. Soc. Amer. Vol. 44, pp. 505-507, 1954.
    25. ISO 5925-1, “Fire Tests -- Evaluation of Performance of Smoke Control Door Assemblies -- Part 1: Ambient Temperature Test,” International Organization for Standardization, 1995.
    26. ISO 5925-2, “Fire Tests -- Smoke Control Door and Shutter Assemblies -- Part 2: Commentary on Test Method and Test Data Application,” International Organization for Standardization, 1995.
    27. UL 1784, “Air Leakage Test of Door Assemblies,” Underwriter Laboratory Standards, 2001.
    28. Plettner, R.M., “What is a Smoke Damper? A Summary of UL Standard 555S- Leakage- Rated Dampers for Use in Smoke Control Systems,” ASHRAE Transactions, vol. 90, n pt 1B, pp. 655-664, 1984.
    29. Sudo, M., Tamaka T., Yoshikawa T., and Nakamura K., “Smoke Leakage Test of Smoke Proof Fire Shutter,” Conference Paper, Architecture Institute of Japan (AIJ), Kyushu branch, 1998.
    30. Aburano, K., Yamana T., and Wakamatsu T., “Smoke Leakage Tests of Seat Shutter,” Conference Paper, Architecture Institute of Japan (AIJ), 2001.
    31. Yamana, T., “Smoke Leakage Test of Fire Damper,” Conference Paper, Architecture Institute of Japan (AIJ), 2001.
    32. Cooper, L.Y., “Need and Availability of Test Methods for Measuring the Smoke Leakage Characteristics of Door Assemblies,” ASTM Special Technical Publication, pp310-329, 1985.
    33. Kazuki, U., “Fire Testing of Window Glass for Integrity and Smoke Leakage,” Research Report, Architecture Institute of Japan (AIJ), Kanto branch, Paper No. 8, 1997.
    34. Sheppard, D.T., and Aittaniemi, K.W., “Smoke Leakage Through Class A Boundaries,” Underwriters Laboratories Report No. CG-D-03-97, 1997.
    35. Klote, J.H., “Design of Smoke Control Systems for Areas of Refuge,” ASHRAE Transactions, Vol. 99, No. 2, pp. 793-807, 1993.
    36. Klote, J.H., “An Overview of Smoke Control Research,” ASHRAE Transactions: Symposia Vol. 101, No. 1, pp. 979-990, 1995.
    37. Sudo, M., Tamaka T., and Saito F., “A Study on Development of Leakage Test Apparatus,” Conference Paper, Architecture Institute of Japan (AIJ) in Hokkaido, Paper No. 3021, 1995.
    38. CNS1387,「滅火器」,中國國家標準,民國93年。
    39. Thornton, W., “The Relation of Oxygen to the Heat of Combustion of Organic Compounds,” Philosophical Magazine and J. of Science, Vol.33, No.196, 1917.
    40. Huggett, C., “Estimation of Heat Release by Means of Oxygen Consumption Measurement,” J. of Fire and Materials, Vol.12, pp.61-65, 1980.
    41. Parker, W., “Calculation of the Heat Release Rate by Oxygen Consumption for Various Applications,” NBSIR 81-2427, 1982.
    42. Janssens, M., “Measuring Rate of Heat Release by Oxygen Consumption,” Fire Technology, Vol.27, pp.234-249, 1991.
    43. Babrauskas, V., “Burning Rates,” the SPFE Handbook of Fire Protection Engineering, Chapter 11-1, National Fire Protection Association, Quincy, MA, 1988.
    44. CNS 11227,「建築用防火門耐火檢驗法」,中國國家標準,民國91年。
    45. CNS 12514,「建築物構造部分耐燃檢驗法」,中國國家標準,民國94年。
    46. CNS 14815,「建築用防火固定窗耐火試驗法」,中國國家標準,民國94年。
    47. ISO 834, “Fire Resistance Tests – Elements of Building Construction,” International Organization for Standardization, 1999.
    48. CNS 6532,「建築物室內裝修材料之耐燃檢驗法」,中國國家標準,民國92年。

    下載圖示 校內:2008-01-25公開
    校外:2008-01-25公開
    QR CODE