簡易檢索 / 詳目顯示

研究生: 關叡鉉
Guan, Ray-Syuan
論文名稱: 新穎有機二極體元件磁阻現象
Novel magnetoconductance responses in organic diodes
指導教授: 郭宗枋
Guo, Tzung-Fung
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 109
中文關鍵詞: 有機二極體磁電導震盪
外文關鍵詞: organic diode, magnetoconductance, oscillation
相關次數: 點閱:86下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究將針對一個不含任何磁性材料所製成的有機二極體元件,觀察其電流在外加磁場下的變化,而此現象即稱為磁電導(magnetoconductance, MC)效應。特別的是,在實驗上我們觀察到元件磁電導伴隨著震盪現象,不同於以往文獻中所觀察到的磁電導現象,為了探討其機制來源,我們在實驗上改變了元件的受熱溫度、電子施體與受體的濃度比例、不同功函數的金屬電極等參數,最後並討論幾種可能的機制。未來,若能了解其機制並有效的控制其特性,想必對能源再生以及資訊儲存方面能有重大的貢獻。

    In this study, the variation of current of a nonmagnetic organic diode was investigated in the external magnetic field. This effect is called magnetoconductance (MC). Especially, the oscillation effect of the magnetoconductance was observed in this study, and it is different from the magnetoconductance responses of the literatures. In order to understand the mechanism, some parameters were changed in experiment, include the temperature, the ratio of donor and acceptor, and the metal electrode with different work function. In the future, if the mechanism could be realized, it could contribute to energy regeneration and information storage.

    摘要......................................................I Abstract.................................................II 致謝....................................................III 目錄.....................................................IV 圖目錄.................................................VIII 第一章 簡介及研究動機....................................1 1-1 前言................................................1 1-2 磁阻介紹............................................1 1-2-1 常磁阻.........................................2 1-2-2 異向性磁阻.....................................2 1-2-3 巨磁阻.........................................4 1-2-4 穿隧式磁阻.....................................6 1-3 有機磁阻............................................8 1-3-1 有機磁阻的發展.................................8 1-3-2 各國際研究團隊的文獻回顧及研究................12 1-4 研究動機...........................................21 第二章 基本理論機制討論.................................27 2-1 有機材料的激發態...................................27 2-2 氫原子模型的基本量子效應...........................29 2-2-1 自旋軌道耦合作用(Spin-orbital coupling interaction).............................................30 2-2-2 超精細結構交互作用(Hyperfine splitting interaction).............................................32 2-2-3 黎曼效應作用(Zeeman effect interaction).......33 2-2-4 交換耦合作用力(Exchange interaction)..........36 2-3 磁場效應的驅動來源.................................38 2-3-1 橫向傳輸率(Intersystem crossing)..............40 2-3-2 電子-電洞對的分離能力.........................43 2-4 激發態的能量轉換路徑與結論.........................46 第三章 實驗製作流程及量測方法...........................48 3-1 元件簡介...........................................48 3-2 ITO玻璃基板準備....................................49 3-3 元件製作...........................................52 3-3-1 ITO玻璃基板處理...............................52 3-3-2 ITO玻璃基板表面修飾...........................52 3-3-3 主動層........................................53 3-3-4 蒸鍍金屬電極..................................53 3-4 量測...............................................56 3-4-1 量測儀器架設..................................56 3-4-2 元件特性量測..................................59 第四章 外加磁場下有機二極體元件的震盪磁電導效應.........60 4-1 簡介...............................................60 4-2 元件結構及量測架設.................................60 4-3 元件短路電流的產生及磁電導效應.....................62 4-4 元件短路電流的產生.................................65 4-5 磁電導效應的調制與作用.............................75 4-5-1 有機電子受體濃度與磁電導效應..................75 4-5-2 金屬電極功函數的調制與磁電導效應..............79 4-5-3 實驗結果討論..................................82 4-6 討論磁效應機制對元件電流的貢獻.....................85 4-6-1 極化子對(Polaron-pair)對磁效應的貢獻..........85 4-6-2 藍道能階(Landau level)對磁效應的貢獻..........86 4-6-3 能帶能階量子化對磁效應的貢獻..................89 4-6-4 陷阱態(Trap state)對磁效應的貢獻..............92 4-6-5 電偶極(Dipole)對磁效應的貢獻..................95 4-6-6 電子在磁場作用下的磁散射對磁效應的貢獻........99 4-6-7 機制整合討論.................................102 第五章 結論與未來工作建議..............................103 5-1 結論..............................................103 5-2 未來工作建議......................................104 參考文獻................................................106

    [1] G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989)
    [2] M. N. Baibich, J. M. Broto, A. Fert, F. N. V. Dau, and F. Petroff, Phys. Rev. Lett. 61, 2472 (1988)
    [3] T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995)
    [4] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995)
    [5] U. E. Steiner and T. Ulrich, Chem. Rev. 89, 51 (1989)
    [6] E. Frankevich and A. Zakhidov, Phys. Rev. B 53, 4498 (1996)
    [7] Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi, Nature 427, 821 (2004)
    [8] . Mermer, G. Veeraraghavan, T. L. Francis, Y. Sheng, D. T. Nguyen, M. Wohlgenannt, A. Khler, M. K. Al-Suti, and M. S. Khan, Phys. Rev. B 72, 205202 (2005)
    [9] V. N. Prigodin, J. D. Bergeson, D. M. Lincoln, and A. J. Epstein, Synth. Met. 156, 757 (2006)
    [10] J. D. Bergeson, V. N. Prigodin, D. M. Lincoln, and A. J. Epstein, Phys. Rev. Lett. 100, 067201 (2008)
    [11] T. D. Nguyen, J. Rybicki, Y. Sheng, and M. Wohlgenannt, Phys. Rev. B 77, 035210 (2008)
    [12] P. A. Bobbert, T. D. Nguyen, F. W. A. van Oost, B. Koopmans, and M. Wohlgenannt, Phys. Rev. Lett. 99, 216801 (2007)
    [13] P. Desai, P. Shakya, T. Kreouzis, and W. P. Gillin, Phys. Rev. B 76, 235202 (2007)
    [14] Z. Xu and B. Hu, Adv. Funct. Mater. 18, 2611 (2008)
    [15] P. Desai, P. Shakya, T. Kreouzis, and W. P. Gillin, J. Appl. Phys. 102, 073710 (2007)
    [16] T. H. Lee, T. F. Guo, J. C. A. Huang, and T. C. Wen, Appl. Phys. Lett. 92, 153303 (2008)
    [17] W. Shubnikov and W. J. de Hass, Proc. Netherlands Roy. Acad. Sci. 33, 130 (1930)
    [18] B. Brocklehurst, Nature 221, 921 (1969)
    [19] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 75, 4 (1999)
    [20] M. A. Baldo and S. R. Forrest, Phys. Rev. B 62, 10958 (2000)
    [21] A. Kadashchuk, A. Vakhnin, I. Blonski, D. Beljonne, Z. Shuai, J. L. Bre´das, V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bassler, Phys. Rev. Lett. 93, 6 (2004)
    [22] E. L. Frankevich, A. A. Lymarev, I. Sokolik, F. E. Karasz, S. Blumstengel, R. H. Baughman, and H. H. Hrhold, Phys. Rev. B 46, 9320 (1992).
    [23] H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tierney, W. Zhang, M. Heeney, I. McCulloch, J. Nelson, D. D. C. Bradley, and J. R. Durrant, J. Amer. Chem. Soc. 130, 3030 (2008)
    [24] Nouredine Zettili, 「Quantum Mechanics Concepts and Applications」, Wiley, ISBN 0-471-48944-1.
    [25] Stephen Gasiorowicz, 「Quantum physics」3rd edition, Wiley international Edition, ISBN 0-471-42945-7.
    [26] David J.Griffiths,「Introduction to Quantum Mechanics」2nd edition, Prentice Hall, ISBN 0-13-111892-7.
    [27] Y. Wu and B. Hu, Appl. Phys. Lett. 89, 203510 (2006)
    [28] M. Wohlgenannt and Z. V. Vardeny, J. Phys.: Condens. Matter 15, R83 (2003)
    [29] J. Kalinowski, M. Cocchi, D. Virgili, P. D. Marco, and V. Fattori, Chem. Phys. Lett. 380,710 (2003)
    [30] V. Ern and R. E. Merrifield, Phys. Rev. Lett. 21, 9 (1968)
    [31] V. D. Mihailetchi, H. Xie, B. de Boer, L. J. A. Koster, and P. W. M. Blom, Adv. Funct. Mater. 16, 699 (2006)
    [32] I. V. Tolstova, A. V. Belovb, M. G. Kaplunovc, I. K. Yakuschenkoc, N. G. Spitsinac, M. M. Triebela, and E. L. Frankevicha, J. Lumin. 112, 368 (2005)
    [33] 原著:Kittel, 譯者:洪連輝, 劉立基, 魏榮君, 「固態物理學導論」 “高立圖書有限公司”出版

    下載圖示 校內:2012-07-21公開
    校外:2014-07-21公開
    QR CODE