| 研究生: |
秦小玫 Ching, Paula Carmela |
|---|---|
| 論文名稱: |
評估載入去細胞軟骨粉末於改良的玻尿酸水凝膠支架對於關節軟骨的再生特性 Evaluation of Articular Cartilage Regeneration Properties of Decellularized Cartilage Powder/Modified Hyaluronic Acid Hydrogel Scaffolds |
| 指導教授: |
葉明龍
Yeh, Ming-Long |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 關節軟骨 、去細胞軟骨粉 、改良玻尿酸水凝膠 、骨關節炎 、組織工程 |
| 外文關鍵詞: | Articular cartilage, decellularized cartilage powder, modified hyaluronic acid hydrogel, osteoarthritis, tissue engineering |
| 相關次數: | 點閱:23 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
關節軟骨因缺乏血管供應養分、細胞活性低及幹細胞數量有限,使其具較低的自我修復能力,這些特性對於骨關節炎的治療與關節軟骨再生構成重大的挑戰。在組織工程領域中,結合支架與生物活性材料被視為一項具潛力的再生策略。本研究開發了一種由去細胞化軟骨粉(DCP)與經醛基與甲基丙烯酸酯修飾的玻尿酸水凝膠(AHAMA)組成的複合材料,探討其在關節軟骨修復中的應用潛力。為評估DCP/AHAMA 是否能提供有利於細胞分化與遷移的微環境,我們進行多項體外測試,包括細胞毒性、細胞活性與細胞遷移實驗,結果顯示,該複合材料無明顯細胞毒性,並可為髕下脂肪墊間質幹細胞(IFPSCs)提供適合生長的微環境,展現良好的生物相容性。機械性質測試亦證實該複合材料具備適當的黏著性與抗壓強度。另外在三維(3D)培養實驗中,將 IFPSCs 與 DCP/AHAMA 共同培養於一般與誘導性軟骨分化培養基中,評估其軟骨分化能力,結果顯示,其軟骨分化標記(COL2 與 CAN)表現上升,而肥大分化標記(COL1)則表現下降。綜合上述,DCP/AHAMA支架可有效模擬原生軟骨的生物力學特性,亦能促進軟骨分化並抑制肥大分化,具備應用於軟骨組織工程與臨床治療之潛力。
Articular cartilage has a limited intrinsic ability to heal naturally, thus presenting a challenge for the treatment and regeneration of osteoarthritis. A potential strategy for cartilage tissue regeneration involves using scaffolds and bioactive materials to support tissue repair in degenerated cartilage. In this study, a composite material consisting of decellularized cartilage powder (DCP) and hyaluronic acid hydrogel modified by aldehyde groups and methacrylate (AHAMA) was synthesized and evaluated in vitro for its regenerative potential. Cytocompatibility assays, including cell proliferation, cell viability, and cell migration, indicated that DCP/AHAMA composite exhibits negligible or no cytotoxic effects. Additionally, it provides a supportive microenvironment for infrapatellar fat pad stem cells (IFPSCs). Mechanical testing confirmed that the composite possesses suitable adhesive and compressive strength. Three-dimensional (3D) cultures incorporating IFPSCs and DCP/AMAHA evaluated the ability of IFPSCs to differentiate into chondrocytes in both normal and chondroinductive media. Results demonstrated upregulated expression of chondrogenic markers such as COL2 and CAN, alongside downregulation of the hypertrophic marker COL1. The DCP/AHAMA scaffold effectively mimics native cartilage biomechanics, promotes chondrogenic differentiation, inhibits hypertrophic differentiation, and demonstrates promise for applications in cartilage tissue engineering and clinical treatment strategies.
1. Bhosale AM, Richardson JB. Articular cartilage: structure, injuries and review of management. Br Med Bull. 2008;87:77–95.
2. Mow VC, Ratcliffe A, Robin Poole A. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials. 1992;13(2):67–97.
3. Moutos FT, Guilak F. Composite scaffolds for cartilage tissue engineering. Biorheology. 2008;45(3–4):501–12.
4. Newman AP. Articular cartilage repair. Am J Sports Med. 1998;26(2):309–24.
5. Di Bella C, Fosang A, Donati DM, Wallace GG, Choong PFM. 3D Bioprinting of Cartilage for Orthopedic Surgeons: Reading between the Lines. Front Surg. 2015;2:39.
6. Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009 Nov;1(6):461–8.
7. Beddoes CM, Whitehouse MR, Briscoe WH, Su B. Hydrogels as a Replacement Material for Damaged Articular Hyaline Cartilage. Mater (Basel, Switzerland). 2016 Jun;9(6).
8. Linn FC, Sokoloff L. Movement and composition of interstitial fluid of cartilage. Arthritis Rheum. 1965 Aug;8(4):481–94.
9. Williamson AK, Chen AC, Masuda K, Thonar EJMA, Sah RL. Tensile mechanical properties of bovine articular cartilage: variations with growth and relationships to collagen network components. J Orthop Res Off Publ Orthop Res Soc. 2003 Sep;21(5):872–80.
10. Eyre DR, Weis MA, Wu JJ. Articular cartilage collagen: an irreplaceable framework? Eur Cell Mater. 2006 Nov;12:57–63.
11. Kelly D, Crawford A, Dickinson S, Sims T, Mundy J, Hollander A, et al. Biochemical markers of the mechanical quality of engineered hyaline cartilage. J Mater Sci Mater Med. 2007 Mar;18:273–81.
12. Adarmes H, Donders L, Dörner C, González E, Galleguillos M. Glycosaminoglycans (GAGs) determination in healthy and damaged equine articular cartilage. Austral J Vet Sci. 2021 May;49(2 SE-Short communication):129–33.
13. Buckwalter JA, Mankin HJ. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect. 1998;47:477–86.
14. Yanagishita M. Function of proteoglycans in the extracellular matrix. Acta Pathol Jpn. 1993 Jun;43(6):283–93.
15. Chen FS, Frenkel SR, Di Cesare PE. Repair of articular cartilage defects: part I. Basic Science of cartilage healing. Am J Orthop (Belle Mead NJ). 1999 Jan;28(1):31–3.
16. Ngadimin KD, Stokes A, Gentile P, Ferreira AM. Biomimetic hydrogels designed for cartilage tissue engineering. Biomater Sci. 2021;9(12):4246–59.
17. Responte DJ, Natoli RM, Athanasiou KA. Collagens of articular cartilage: structure, function, and importance in tissue engineering. Crit Rev Biomed Eng. 2007;35(5):363–411.
18. Schwartz MH, Leo PH, Lewis JL. A microstructural model for the elastic response of articular cartilage. J Biomech. 1994 Jul;27(7):865–73.
19. Kovach IS. A molecular theory of cartilage viscoelasticity. Biophys Chem. 1996;59(1):61–73.
20. Maldonado M, Nam J. The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. Biomed Res Int. 2013;2013:284873.
21. Broom ND, Poole CA. A functional-morphological study of the tidemark region of articular cartilage maintained in a non-viable physiological condition. J Anat. 1982 Aug;135(Pt 1):65–82.
22. Nasiri B, Mashayekhan S. Fabrication of porous scaffolds with decellularized cartilage matrix for tissue engineering application. Biol J Int Assoc Biol Stand. 2017 Jul;48:39–46.
23. Mankin HJ. The response of articular cartilage to mechanical injury. J Bone Joint Surg Am. 1982 Mar;64(3):460–6.
24. Heinegård, D., Lorenzo, P., Önnerfjord, P., and Saxne T. Rheumatology. Sixth Edit. Philadelphia; 2015. 33–41 p.
25. Mankin HJ, Thrasher AZ. Water content and binding in normal and osteoarthritic human cartilage. J Bone Joint Surg Am. 1975 Jan;57(1):76–80.
26. Guilak F, Ratcliffe A, Lane N, Rosenwasser MP, Mow VC. Mechanical and biochemical changes in the superficial zone of articular cartilage in canine experimental osteoarthritis. J Orthop Res Off Publ Orthop Res Soc. 1994 Jul;12(4):474–84.
27. Chu CR, Szczodry M, Bruno S. Animal models for cartilage regeneration and repair. Tissue Eng Part B Rev. 2010 Feb;16(1):105–15.
28. Matsiko A, Levingstone TJ, O’Brien FJ. Advanced Strategies for Articular Cartilage Defect Repair. Mater (Basel, Switzerland). 2013 Feb;6(2):637–68.
29. Hunziker EB. Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable? Osteoarthr Cartil. 1999 Jan;7(1):15–28.
30. Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1993 Apr;75(4):532–53.
31. Temenoff JS, Mikos AG. Review: tissue engineering for regeneration of articular cartilage. Biomaterials. 2000 Mar;21(5):431–40.
32. Beris AE, Lykissas MG, Papageorgiou CD, Georgoulis AD. Advances in articular cartilage repair. Injury. 2005 Nov;36 Suppl 4:S14-23.
33. Mizuta H, Kudo S, Nakamura E, Takagi K, Hiraki Y. Expression of the PTH/PTHrP receptor in chondrogenic cells during the repair of full-thickness defects of articular cartilage. Osteoarthr Cartil. 2006;14(9):944–52.
34. Poddar SK, Widstrom L. Nonoperative Options for Management of Articular Cartilage Disease. Clin Sports Med. 2017 Jul;36(3):447–56.
35. Memon AR, Quinlan JF. Surgical Treatment of Articular Cartilage Defects in the Knee: Are We Winning? Toritsuka Y, editor. Adv Orthop. 2012;2012:528423.
36. Steadman JR, Rodkey WG, Briggs KK. Microfracture: Its History and Experience of the Developing Surgeon. Cartilage. 2010 Mar;1(2):78–86.
37. Knutsen G, Engebretsen L, Ludvigsen TC, Drogset JO, Grøntvedt T, Solheim E, et al. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am. 2004 Mar;86(3):455–64.
38. Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG. Outcomes of microfracture for traumatic chondral defects of the knee: Average 11-year follow-up. Arthroscopy. 2003 May;19(5):477–84.
39. Hangody L, Füles P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am. 2003;85-A Suppl:25–32.
40. Jeuken RM, Roth AK, Peters RJRW, Van Donkelaar CC, Thies JC, Van Rhijn LW, et al. Polymers in Cartilage Defect Repair of the Knee: Current Status and Future Prospects. Polymers (Basel). 2016 Jun;8(6).
41. Saris DBF, Vanlauwe J, Victor J, Almqvist KF, Verdonk R, Bellemans J, et al. Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture. Am J Sports Med. 2009 Nov;37 Suppl 1:10S-19S.
42. Marlovits S, Zeller P, Singer P, Resinger C, Vécsei V. Cartilage repair: generations of autologous chondrocyte transplantation. Eur J Radiol. 2006 Jan;57(1):24–31.
43. Bartlett W, Skinner JA, Gooding CR, Carrington RWJ, Flanagan AM, Briggs TWR, et al. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br. 2005 May;87(5):640–5.
44. Kon E, Filardo G, Condello V, Collarile M, Di Martino A, Zorzi C, et al. Second-Generation Autologous Chondrocyte Implantation: Results in Patients Older Than 40 Years. Am J Sports Med. 2011 May;39(8):1668–76.
45. Behrens P, Bitter T, Kurz B, Russlies M. Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI)--5-year follow-up. Knee. 2006 Jun;13(3):194–202.
46. Horas U, Pelinkovic D, Herr G, Aigner T, Schnettler R. Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. A prospective, comparative trial. J Bone Joint Surg Am. 2003 Feb;85(2):185–92.
47. Rahman RA, Radzi MAA, Sukri NM, Nazir NM, Sha’ban M. Tissue engineering of articular cartilage: From bench to bed-side. Tissue Eng Regen Med. 2015;12(1):1–11.
48. Danisovic L, Varga I, Zamborsky R, Böhmer D. The tissue engineering of articular cartilage: cells, scaffolds and stimulating factors. Exp Biol Med (Maywood). 2012 Jan;237(1):10–7.
49. Howard D, Buttery LD, Shakesheff KM, Roberts SJ. Tissue engineering: strategies, stem cells and scaffolds. J Anat. 2008 Jul;213(1):66–72.
50. Vinatier C, Guicheux J. Cartilage tissue engineering: From biomaterials and stem cells to osteoarthritis treatments. Ann Phys Rehabil Med. 2016 Jun;59(3):139–44.
51. Capito RM, Spector M. Scaffold-based articular cartilage repair. IEEE Eng Med Biol Mag. 2003;22(5):42–50.
52. Getgood A, Brooks R, Fortier L, Rushton N. Articular cartilage tissue engineering. J Bone Jt Surg Br Vol. 2009;91-B(5):565–76.
53. Echeverria Molina MI, Malollari KG, Komvopoulos K. Design Challenges in Polymeric Scaffolds for Tissue Engineering. Front Bioeng Biotechnol. 2021;9:617141.
54. Kwon H, Paschos NK, Hu JC, Athanasiou K. Articular cartilage tissue engineering: the role of signaling molecules. Cell Mol Life Sci. 2016 Mar;73(6):1173–94.
55. van Osch GJVM, Mandl EW, Marijnissen WJCM, van der Veen SW, Verwoerd-Verhoef HL, Verhaar JAN. Growth factors in cartilage tissue engineering. Biorheology. 2002;39(1–2):215–20.
56. Koga H, Muneta T, Nagase T, Nimura A, Ju YJ, Mochizuki T, et al. Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit. Cell Tissue Res. 2008;333(2):207–15.
57. Fan H, Hu Y, Qin L, Li X, Wu H, Lv R. Porous gelatin-chondroitin-hyaluronate tri-copolymer scaffold containing microspheres loaded with TGF-beta1 induces differentiation of mesenchymal stem cells in vivo for enhancing cartilage repair. J Biomed Mater Res A. 2006 Jun;77(4):785–94.
58. Luyten FP, Chen P, Paralkar V, Reddi AH. Recombinant bone morphogenetic protein-4, transforming growth factor-beta 1, and activin A enhance the cartilage phenotype of articular chondrocytes in vitro. Exp Cell Res. 1994 Feb;210(2):224–9.
59. Fortier LA, Mohammed HO, Lust G, Nixon AJ. Insulin-like growth factor-I enhances cell-based repair of articular cartilage. J Bone Joint Surg Br. 2002 Mar;84(2):276–88.
60. Morales TI. The quantitative and functional relation between insulin-like growth factor-I (IGF) and IGF-binding proteins during human osteoarthritis. J Orthop Res Off Publ Orthop Res Soc. 2008 Apr;26(4):465–74.
61. Arora A, Bhattacharjee A, Mahajan A, Katti D. Cartilage Tissue Engineering: Scaffold, Cell, and Growth Factor-Based Strategies. In: Regenerative Medicine: Laboratory to Clinic. 2017. p. 233–57.
62. Solchaga LA, Penick K, Goldberg VM, Caplan AI, Welter JF. Fibroblast growth factor-2 enhances proliferation and delays loss of chondrogenic potential in human adult bone-marrow-derived mesenchymal stem cells. Tissue Eng Part A. 2010 Mar;16(3):1009–19.
63. Yamamoto T, Wakitani S, Imoto K, Hattori T, Nakaya H, Saito M, et al. Fibroblast growth factor-2 promotes the repair of partial thickness defects of articular cartilage in immature rabbits but not in mature rabbits. Osteoarthr Cartil. 2004;12(8):636–41.
64. Schmidt MB, Chen EH, Lynch SE. A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair. Osteoarthr Cartil. 2006;14(5):403–12.
65. Morris AH, Stamer DK, Kyriakides TR. The host response to naturally-derived extracellular matrix biomaterials. Semin Immunol. 2017;29:72–91.
66. Cheng CW, Solorio LD, Alsberg E. Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopaedic tissue engineering. Biotechnol Adv. 2014;32(2):462–84.
67. Xia C, Mei S, Gu C, Zheng L, Fang C, Shi Y, et al. Decellularized cartilage as a prospective scaffold for cartilage repair. Mater Sci Eng C. 2019;101:588–95.
68. Lin X, Chen J, Qiu P, Zhang Q, Wang S, Su M, et al. Biphasic hierarchical extracellular matrix scaffold for osteochondral defect regeneration. Osteoarthr Cartil. 2018;26(3):433–44.
69. Schwarz S, Elsaesser AF, Koerber L, Goldberg-Bockhorn E, Seitz AM, Bermueller C, et al. Processed xenogenic cartilage as innovative biomatrix for cartilage tissue engineering: effects on chondrocyte differentiation and function. J Tissue Eng Regen Med [Internet]. 2015 Dec 1;9(12):E239–51. Available from: https://doi.org/10.1002/term.1650
70. Das P, Mishra R, Devi B, Rajesh K, Basak P, Roy M, et al. Decellularized xenogenic cartilage extracellular matrix (ECM) scaffolds for the reconstruction of osteochondral defects in rabbits. J Mater Chem B. 2021 Jun;9(24):4873–94.
71. Zhang Y, Hao C, Guo W, Peng X, Wang M, Yang Z, et al. Co-culture of hWJMSCs and pACs in double biomimetic ACECM oriented scaffold enhances mechanical properties and accelerates articular cartilage regeneration in a caprine model. Stem Cell Res Ther. 2020 May;11(1):180.
72. Pulver, Shevtsov A, Leybovich B, Artyuhov I, Maleev Y, Peregudov A. Production of organ extracellular matrix using a freeze-thaw cycle employing extracellular cryoprotectants. Cryo Letters. 2014;35(5):400–6.
73. Roth SP, Glauche SM, Plenge A, Erbe I, Heller S, Burk J. Automated freeze-thaw cycles for decellularization of tendon tissue - a pilot study. BMC Biotechnol. 2017 Feb;17(1):13.
74. Sutherland AJ, Converse GL, Hopkins RA, Detamore MS. The bioactivity of cartilage extracellular matrix in articular cartilage regeneration. Adv Healthc Mater. 2015 Jan;4(1):29–39.
75. Ghassemi T, Saghatoleslami N, Mahdavi-Shahri N, Matin MM, Gheshlaghi R, Moradi A. A comparison study of different decellularization treatments on bovine articular cartilage. J Tissue Eng Regen Med. 2019 Oct;13(10):1861–71.
76. Zhang Q, Hu Y, Long X, Hu L, Wu Y, Wu J, et al. Preparation and Application of Decellularized ECM-Based Biological Scaffolds for Articular Cartilage Repair: A Review . Vol. 10, Frontiers in Bioengineering and Biotechnology . 2022.
77. Das P, Rajesh K, Lalzawmliana V, Bavya Devi K, Basak P, Lahiri D, et al. Development and Characterization of Acellular Caprine Choncal Cartilage Matrix for Tissue Engineering Applications. Cartilage. 2019 Jun;13(2_suppl):1292S-1308S.
78. Kiyotake EA, Beck EC, Detamore MS. Cartilage extracellular matrix as a biomaterial for cartilage regeneration. Ann N Y Acad Sci. 2016 Nov;1383(1):139–59.
79. Kim H, Kim Y, Fendereski M, Hwang NS, Hwang Y. Recent Advancements in Decellularized Matrix-Based Biomaterials for Musculoskeletal Tissue Regeneration. Adv Exp Med Biol. 2018;1077:149–62.
80. Schwarz S, Koerber L, Elsaesser AF, Goldberg-Bockhorn E, Seitz AM, Dürselen L, et al. Decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications. Tissue Eng Part A. 2012 Nov;18(21–22):2195–209.
81. Beck EC, Barragan M, Libeer TB, Kieweg SL, Converse GL, Hopkins RA, et al. Chondroinduction from Naturally Derived Cartilage Matrix: A Comparison Between Devitalized and Decellularized Cartilage Encapsulated in Hydrogel Pastes. Tissue Eng Part A. 2016 Apr;22(7–8):665–79.
82. Sun Y, Yan L, Chen S, Pei M. Functionality of decellularized matrix in cartilage regeneration: A comparison of tissue versus cell sources. Acta Biomater. 2018 Jul;74:56–73.
83. Unterman SA, Gibson M, Lee JH, Crist J, Chansakul T, Yang EC, et al. Hyaluronic acid-binding scaffold for articular cartilage repair. Tissue Eng Part A. 2012 Dec;18(23–24):2497–506.
84. Patti AM, Gabriele A, Vulcano A, Ramieri MT, Della Rocca C. Effect of hyaluronic acid on human chondrocyte cell lines from articular cartilage. Tissue Cell. 2001;33(3):294–300.
85. Moreno A, Martínez A, Olmedillas S, Bello S, de Miguel F. Hyaluronic acid effect on adipose-derived stem cells. Biological in vitro evaluation. Rev Esp Cir Ortop Traumatol. 2015;59(4):215–21.
86. Kusayama Y, Akamatsu Y, Kumagai K, Kobayashi H, Aratake M, Saito T. Changes in synovial fluid biomarkers and clinical efficacy of intra-articular injections of hyaluronic acid for patients with knee osteoarthritis. J Exp Orthop. 2014 Dec;1(1):16.
87. Wang M, Deng Z, Guo Y, Xu P. Designing functional hyaluronic acid-based hydrogels for cartilage tissue engineering. Mater Today Bio. 2022;17:100495.
88. Burdick JA, Prestwich GD. Hyaluronic Acid Hydrogels for Biomedical Applications. Adv Mater. 2011 Mar;23(12):H41–56.
89. Khunmanee S, Jeong Y, Park H. Crosslinking method of hyaluronic-based hydrogel for biomedical applications. J Tissue Eng. 2017;8:2041731417726464.
90. Tsanaktsidou E, Kammona O, Kiparissides C. Recent Developments in Hyaluronic Acid-Based Hydrogels for Cartilage Tissue Engineering Applications. Polymers (Basel). 2022 Feb;14(4).
91. Tan H, Rubin JP, Marra KG. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for adipose tissue regeneration. Organogenesis. 2010 Jul;6(3):173–80.
92. Chen J, Yang J, Wang L, Zhang X, Heng BC, Wang DA, et al. Modified hyaluronic acid hydrogels with chemical groups that facilitate adhesion to host tissues enhance cartilage regeneration. Bioact Mater. 2021;6(6):1689–98.
93. Li X, Chen S, Li J, Wang X, Zhang J, Kawazoe N, et al. 3D Culture of Chondrocytes in Gelatin Hydrogels with Different Stiffness. Vol. 8, Polymers. 2016.
94. Duan W, Zhao Y, Ren X, Zhao R, Li Q, Sun Z, et al. Combination of chondrocytes and chondrons improves extracellular matrix production to promote the repairs of defective knee cartilage in rabbits. J Orthop Transl. 2021 May;28:47–54.
95. Sobajima S, Shimer AL, Chadderdon RC, Kompel JF, Kim JS, Gilbertson LG, et al. Quantitative analysis of gene expression in a rabbit model of intervertebral disc degeneration by real-time polymerase chain reaction. Spine J. 2005;5(1):14–23.
96. Jia Z, Liu Q, Liang Y, Li X, Xu X, Ouyang K, et al. Repair of articular cartilage defects with intra-articular injection of autologous rabbit synovial fluid-derived mesenchymal stem cells. J Transl Med. 2018;16(1):123.
97. Tavassoli A, Matin MM, Niaki MA, Mahdavi-Shahri N, Shahabipour F. Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold. Iran J Basic Med Sci. 2015 Dec;18(12):1221–7.
98. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006 Jul;27(19):3675–83.
99. Rothrauff BB, Yang G, Tuan RS. Tissue-specific bioactivity of soluble tendon-derived and cartilage-derived extracellular matrices on adult mesenchymal stem cells. Stem Cell Res Ther. 2017;8(1).
100. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006 Aug;126(4):677–89.
101. Park H, Guo X, Temenoff JS, Tabata Y, Caplan AI, Kasper FK, et al. Effect of swelling ratio of injectable hydrogel composites on chondrogenic differentiation of encapsulated rabbit marrow mesenchymal stem cells in vitro. Biomacromolecules. 2009 Mar;10(3):541–6.
102. Patterson J, Siew R, Herring SW, Lin ASP, Guldberg R, Stayton PS. Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration. Biomaterials. 2010 Sep;31(26):6772–81.
103. Spiller KL, Maher SA, Lowman AM. Hydrogels for the repair of articular cartilage defects. Tissue Eng Part B Rev. 2011 Aug;17(4):281–99.
104. Bian L, Hou C, Tous E, Rai R, Mauck RL, Burdick JA. The influence of hyaluronic acid hydrogel crosslinking density and macromolecular diffusivity on human MSC chondrogenesis and hypertrophy. Biomaterials. 2013 Jan;34(2):413–21.
105. Butler DL, Goldstein SA, Guilak F. Functional tissue engineering: the role of biomechanics. J Biomech Eng. 2000 Dec;122(6):570–5.
106. Guilak F, Butler DL, Goldstein SA. Functional tissue engineering: the role of biomechanics in articular cartilage repair. Clin Orthop Relat Res. 2001 Oct;(391 Suppl):S295-305.
107. Liu X, Yang Y, Niu X, Lin Q, Zhao B, Wang Y, et al. An in situ photocrosslinkable platelet rich plasma - Complexed hydrogel glue with growth factor controlled release ability to promote cartilage defect repair. Acta Biomater. 2017 Oct;62:179–87.
108. Zhu D, Wang H, Trinh P, Heilshorn SC, Yang F. Elastin-like protein-hyaluronic acid (ELP-HA) hydrogels with decoupled mechanical and biochemical cues for cartilage regeneration. Biomaterials. 2017;127:132–40.
109. Chung C, Burdick JA. Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis. Tissue Eng Part A. 2009 Feb;15(2):243–54.
110. Martin AR, Patel JM, Locke RC, Eby MR, Saleh KS, Davidson MD, et al. Nanofibrous hyaluronic acid scaffolds delivering TGF-β3 and SDF-1α for articular cartilage repair in a large animal model. Acta Biomater. 2021 May;126:170–82.
111. Grieco M, Ursini O, Palamà IE, Gigli G, Moroni L, Cortese B. HYDRHA: Hydrogels of hyaluronic acid. New biomedical approaches in cancer, neurodegenerative diseases, and tissue engineering. Mater today Bio. 2022 Dec;17:100453.
112. Wang H, Cai L, Paul A, Enejder A, Heilshorn SC. Hybrid elastin-like polypeptide-polyethylene glycol (ELP-PEG) hydrogels with improved transparency and independent control of matrix mechanics and cell ligand density. Biomacromolecules. 2014 Sep;15(9):3421–8.
113. Belay B, Koivisto JT, Parraga J, Koskela O, Montonen T, Kellomäki M, et al. Optical projection tomography as a quantitative tool for analysis of cell morphology and density in 3D hydrogels. Sci Rep. 2021 Mar;11(1):6538.
114. Du X, Cai L, Xie J, Zhou X. The role of TGF-beta3 in cartilage development and osteoarthritis. Bone Res. 2023;11(1):2.
115. Park JS, Woo DG, Yang HN, Lim HJ, Chung HM, Park KH. Heparin-Bound Transforming Growth Factor-β3 Enhances Neocartilage Formation by Rabbit Mesenchymal Stem Cells. Transplantation. 2008;85(4).
116. Na K, Kim S, Woo DG, Sun BK, Yang HN, Chung HM, et al. Synergistic effect of TGFβ-3 on chondrogenic differentiation of rabbit chondrocytes in thermo-reversible hydrogel constructs blended with hyaluronic acid by in vivo test. J Biotechnol. 2007;128(2):412–22.
117. Bordbar S, Lotfi Bakhshaiesh N, Khanmohammadi M, Sayahpour FA, Alini M, Baghaban Eslaminejad M. Production and evaluation of decellularized extracellular matrix hydrogel for cartilage regeneration derived from knee cartilage. J Biomed Mater Res A. 2020 Apr;108(4):938–46.