簡易檢索 / 詳目顯示

研究生: 劉冠瑩
Liu, Kuan-Ying
論文名稱: 鋼筋混凝土剪力強度之尺寸效應
Size Effect on Bi-axial Shear Strength of Reinforced Concrete
指導教授: 劉光晏
Liu, Kuang-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 164
中文關鍵詞: 鋼筋混凝土尺寸效應樁帽
外文關鍵詞: Reinforced Concrete, Size effect, Pile caps
相關次數: 點閱:96下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討尺寸效應以及配筋量(1.7%及0.6%)對於貫穿剪力之影響,以其日後對設計承受高軸壓鋼筋混凝土設計與製作有所幫助。試體製作方面,製作3個三層鋼筋以及1個單層鋼筋的小型樁帽試體,再依邊長比例放大2倍,分別製作3個三層鋼筋以及1個單層鋼筋的中型、大型樁帽試體,總共12個。
    由實驗結果顯示如下。
    三層鋼筋的試體,有效深度增加時,三層鋼筋試體強度不會隨其有效深度之倍率上升 ,其強度隨著有效深度增加而有曲線折減產生;單層鋼筋的試體,有效深度增加時,單層鋼筋試體強度不會隨其有效深度之倍率上升,其強度隨著有效深度增加而上升,但上升幅度越趨平緩,在有效深度從500mm達到1000mm時,試體強度還有上升現象,有尺寸效應產生。
    低主筋比試體之破壞模式為由鋼筋所提供的拉桿強度控制,高主筋比試體之破壞模式為混凝土所提供的壓桿承壓強度控制。
    根據壓拉桿模式所計算之極限強度,如為低主筋比試體不具尺寸效應,但對於高主筋比試體,則應考量尺寸效應之影響。
    本研究根據實驗結果,提出混凝土壓桿承壓強度之尺寸效應修正方式,可有效評估試體最大載重。

    The purpose of this expriment was to investigate the size effect and the ratio of reinforcement (1.7% and 0.6%) in the punching shear, which will benefit to design and manufacture the high strength reinforced concrete subjected to the high axial force in the future.For the manufacture of the specimen, we made three small pile caps which had three-layer rebar and one small pile caps which had one-layer rebar. We made four medium-sized pile caps which are twice as big as the small specimen and four large-sized pile caps which are four-times as big as the small pile caps.For the three-layer rebar specimen, when the effective depth was increased, the strength will not increase with the increase of the effective depth, and the increase of strength had a curve reduction. For the one-layer rebar specimen, when the effective depth is increased, the strength will not increase with the increase of the effective depth, and the increase of strength had a curve reduction.as the effect depth was increase from 500mm to 1000mm,the increase of strength had a little rise.The failure mode of the specimen which had low-reinforcement ratio was controlled by the strength of the tie rod provided by the steel bar,and the failure mode of the specimen which had low reinforcement ratio was controlled by the compression strut rod.provide by the concrete.According to the ultimate strength calculated by strut-and-tie model, it seemed that low-reinforcement-ratio specimen has no size effect ,and the high-reinforcement-ratio specimen should be consider with size effect.Based on the experimental results, this study proposes a method for correcting the size effect of the compressive strength of concrete strut rib, which can effectively evaluate the maximum load of the specimen.

    目錄 摘要. i 致謝 viii 目錄. ixx 表目錄 xii 圖目錄 xiii 參數對照表 xviii 第1章 緒論 1 1.1 研究背景 1 1.2 研究方法 1 1.3 研究流程圖 2 第2章 文獻回顧 3 2.1 試體強度預測 3 2.1.1 壓拉桿模式(Strut-and-tie model)與材料性質預測強度 3 2.1.2 文獻對於貫穿剪力強度之預測與討論 6 2.2 裂縫發展 7 2.2.1 裂縫發展模式 7 第3章 試驗規劃 9 3.1 試體規劃 9 3.1.1 樁帽試體之基本參數 9 3.1.2 鋼筋分布方式 9 3.1.3 上下承壓鋼板與球型支承之設計尺寸與性質 10 3.2 試體設計 12 3.3 試體製作 12 3.3.1 鋼筋應變計黏貼 12 3.3.2 施作流程 13 3.4 加載試驗設備 15 3.5 量測儀器及量測方法 15 3.5.1 量測儀器 15 3.5.2 量測方法 16 3.6 試驗程序 17 3.6.1 試驗開始前階段 17 3.6.2 試驗進行中階段 19 3.6.3 試驗結束後階段 20 3.7 材料試驗 21 3.7.1 混凝土圓柱試體實驗規劃及實驗程序 21 3.7.2 竹節鋼筋之試體規劃及實驗程序 21 第4章 實驗數據分析 37 4.1 試驗中各記錄點之變形 37 4.1.1 底部變形 37 4.1.2 側面變形 38 4.1.3 頂部變形 38 4.1.4 鋼板轉動量、滑動量 39 4.1.5 斷面上下之測量點 39 4.2 應變計紀錄 40 4.2.1 S、M、L試體主筋應變計值 40 4.3 裂縫生成模式比較 72 4.3.1 單層筋試體(-0f)裂縫分析 72 4.3.2 三層筋試體(-0)裂縫分析 75 4.3.3 比較L試體三層筋與單層鋼筋試體之裂縫生成模式 78 第5章 實驗結果與分析比較 81 5.1 討論最大軸力實驗值與預測值之比較 82 5.1.1 使用壓拉桿模式(Strut-and-tie model)進行預測 82 5.1.2 以文獻提供之公式與實驗值進行比較 888 第6章 結論與建議 92 6.1 結論 92 6.2 建議 92 參考文獻 94 附件A 試體設計平面圖 96 附件B 樁帽試體各試體裂縫照片 99 附件C 鋼板設計圖 128

    [1] Lucia Miguel-Tortola , Luis Pallarés , Pedro FranciscoMiguel “Punching shear failure in three-pile caps: Influence of the shear span-depth ratio and secondary reinforcement”. Journal of Engineering Structures, Volume 155, (2018) ,Pages 127-143.
    [2] 日本鋼構造接合部設計指針—鉄骨溶接部の断面検証
    [3] Tadeusz Urban, Michał Gołdyn , J. Krakowski , Łukasz Krawczyk “Experimental Investigation on Punching Behavior of Thick Reinforced Concrete Slabs”. Archives of Civil Engineering59(2), (2013).
    [4] K. Suzuki, K.Otsuki , T. Tsubata “Influence of bar arrangement on ultimate strength of four-pile caps”. Trans Japan Concr Inst, 20 (1998), pp. 195-202
    [5] K. Suzuki, K. Otsuki “Experimental study on corner shear failure of pile caps”. Trans
    Japan Concr Inst, 23 (2002), pp. 303-310
    [6] K. Suzuki, K. Otsuki, T. Tsuchiya “Influence of edge distance on failure mechanisms of pile caps”. Trans Japan Concr Inst, 22 (2000), pp. 361-368
    [7] K. Suzuki, K. Otsuki, T. Tsubata “Experimental study on four pile caps with taper”. Trans Japan Concr Inst, 21 (1999), pp. 327-334
    [8] CEN. Eurocode 2: Design of concrete structures – Part 1–1: General rules and rules for buildings; Spanish version UNE-EN-1992-1-1:2004; (2013).
    [9] Comisión Permanente del Hormigón “Instrucción de Hormigón Estructural EHE-2008”.Ministerio de Fomento, Madrid (2008)
    [10] W. Bin Siao “Strut-and-Tie model for shear behavior in deep beams and pile caps failing in diagonal splitting”ACI Struct J, 90 (1993), pp. 356-363
    [11] K. Otsuki, K. Suzuki “Experimental study on bending ultimate strength of four pile caps”Trans Japan Concr Inst (1996), pp. 93-102
    [12] Clarke JL. “Behaviour and design of pile caps with four pile caps.” Cem Concr Assoc; (1973).
    [13] BS 5400-4: 1990 Steel, concrete and composite bridges — Part 4: Code of practice for design of concrete bridges. British Standard Institution; (1990).
    [14] BS 8110-1:1997 Structural use of Concrete. Part 1: Code of practice for design and construction. British Standard Institution; (1997).
    [15] Comisión Permanente del Hormigón,Instrucción de Hormigón Estructural EHE-2008
    Ministerio de Fomento, Madrid (2008)
    [16] P. Adebar, Z. Zhou “Design of deep pile caps by strut-and-tie models.” ACI Struct J, 93 (1996), pp. 437-448
    [17] 營建署,"混凝土結構設計規範",壓拉桿模式(附篇A),(2011)。

    無法下載圖示 校內:2024-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE