簡易檢索 / 詳目顯示

研究生: 盧俊諺
Lu, Chun-Yen
論文名稱: 老鼠palladin內源性之啟動子分析
Identification and Characterization of Promoters of Murine Palladin Isoforms
指導教授: 王浩文
Wang, Hao-Ven
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 65
中文關鍵詞: 細胞骨架肌動蛋白絲報導基因分析系統啟動子
外文關鍵詞: cytoskeleton, actin filaments, palladin, promoter, reporter gene analysis system
相關次數: 點閱:182下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 真核生物的細胞骨架主要由微管(microtubules)、肌動蛋白絲(filaments actin, F-actin)及中間絲(Intermediate filaments)組成並形成複雜且動態的網狀結構,它們參與了細胞支撐、細胞內物質傳遞及細胞移動等功能。肌動蛋白絲具有高動態的組裝與拆解現象,先前研究顯示,在移動中的細胞前端(leading edge)可發現大量F-actin聚集成長度不一的束狀壓力絲(stress fiber),且在細胞附著位置(focal adhesion)也可觀察到F-actin大量表現,因此,F-actin所組成的微絲在細胞內扮演著非常重要的角色。肌動蛋白相關蛋白palladin於西元2000年被發現,現屬於palladin/myotilin/myopalladin family的一員。Palladin被發現能與多種肌動蛋白相關蛋白結合形成複雜結構,協助細胞移動及附著。截至目前為止,palladin已被發現有多種異構物(isoforms),其產物以分子量200kDa、140kDa及90~92kDa為主,各種異構物在不同發育時期的組織內表現量互有差異。目前有文獻指出胰臟癌及乳癌的腫瘤細胞中,palladin表現量提升,同時也觀察到癌細胞具有較活躍的入侵及轉移現象。雖然目前針對palladin與癌症產生的因果關係研究尚不明瞭,由觀察顯示palladin與癌細胞間的交互作用機制極需進一步研究闡明。本研究主要目的為找出控制palladin三種異構物表現的啟動子區域;首先,利用網際網路資料庫搜尋與比較小鼠和其他物種之palladin基因上高度保留區域,分析可能的啟動子位置,再利用pGL4載體、報導基因分析系統進一步確定核心區域,藉以發現並解釋palladin各異構物可能的轉錄因子結合位與生理意義,希望能提供palladin不同異構物在生理、發育及疾病…等研究的相關資訊與幫助。

    Cytoskeleton is a cellular scaffolding structure within cytoplasm, in eukaryotic cells, there are three kinds of cytoskeletal filaments, microtubules, intermediate filaments and actin filaments. These structures together to form a complex network, providing cell support, intercellular transport and cell motility. Actin filaments (F-actin) is found to have highly dynamic in assembling and disassembling. Previous studies show that variant length of F-actin form into stress fibers, express in leading edge and focal adhesion. Actin associated protein, palladin, found in 2000, which belongs to palladin/myotilin/myopalladin family. Palladin is reported to interact with several actin associated proteins and further impair cell movement and adhesion. It has been described at least three isoforms, the 200kDa isoform, 140kDa isoform and 90~92kDa isoform, each of them has different expression pattern within different tissues. In some cancer studies, palladin expression level is up-regulated in cancer cells which have higher invention and metastasis activity. The main aim in this study is to characterize the promoter region which control the expression of three palladin isoforms, first, using online database searching and program prediction, then used reporter gene analysis system to investigate the promoter core region and find out the putative transcription factor binding sites. We hope the research results in this study will provide more information in physiological, development and disease studies in future.

    中文摘要 1 Abstract 3 Acknowledgement 4 Contents 5 List of Tables 7 List of Figures 8 Introduction 9 1. The actin cytoskeleton 9 2. Palladin, an actin associated protein 12 3. Palladin associated proteins 14 4. Disease studies 16 5. Recently researches about palladin 17 6. Aim of this study 18 Materials and Methods 20 1. Cell line 20 2. Bacteria 20 3. Vectors 20 4. Molecular biology materials 20 5. Chemicals 21 6. Prediction of palladin promoters 21 7. Genomic DNA extraction 23 8. Cloning of constructs for luciferase assay 23 9. C2C12 transfection 24 10. Luciferase assay 24 Results 26 1. Promoter prediction of three isoforms revealed multiple potential transcription start sites 26 2. Transcription factor binding sites prediction of three isoforms revealed multiple potential regulate elements interaction position 27 3. Luciferase assay indicated the putative promoter core region of three isoforms and revealed different activity during differentiation 28 Discussion 31 References 36 List of Tables Table 1. Transcription start sites prediction result of murine palladin 200kDa, 140kDa and 90~92kDa isoforms by Promoter 2.0 Prediction Server 46 Table 2. Transcription start sites prediction result of murine palladin 200kDa, 140kDa and 90~92kDa isoforms by Neural Network Promoter Prediction 47 Table 3. Transcription start sites prediction result of murine palladin 200kDa, 140kDa and 90~92kDa isoforms by Web Promoter Scan Service 48 Table 4. Primers for palladin 200kDa isoform serial deletion construct 49 Table 5. Primers for palladin 140kDa isoform serial deletion construct 50 Table 6. Primers for palladin 90~92kDa isoform serial deletion construct 51 List of Figures Figure 1. Cytokeratin intermediate filament network in rat kangaroo kidney epithelial cells 52 Figure 2. Structure of G-actin monomer 53 Figure 3. Palladin gene structure and its various transcripts 54 Figure 4. The protein structure of different palladin isoforms 55 Figure 5. Palladin isoforms and its putative binding proteins 56 Figure 6A. Evolutional conserved region of murine palladin 200kDa isoform 57 Figure 6B. Evolutional conserved region of murine palladin 140kDa isoform 58 Figure 6C. Evolutional conserved region of murine palladin 90~92kDa isoforms 59 Figure 7. Scheme of the 5’ flanking region of palladin 200kDa isoform putative promoter region 60 Figure 8. Scheme of the 5’ flanking region of palladin 140kDa isoform putative promoter region 61 Figure 9. Scheme of the 5’ flanking region of palladin 90~92kDa isoform putative promoter region 62 Figure 10. Relative luciferase activity of palladin 200kDa isoform in differentiating C2C12 cells 63 Figure 11. Relative luciferase activity of palladin 140kDa isoform in differentiating C2C12 cells 64 Figure 12. Relative luciferase activity of palladin 90~92kDa isoform in differentiating C2C12 cells 65

    Amos, L.A., and D. Schlieper. 2005. Microtubules and maps. Advances in protein chemistry. 71:257-298.

    Bang, M.L., R.E. Mudry, A.S. McElhinny, K. Trombitas, A.J. Geach, R. Yamasaki, H. Sorimachi, H. Granzier, C.C.
    Gregorio, and S. Labeit. 2001. Myopalladin, a Novel 145-Kilodalton Sarcomeric Protein with Multiple Roles in Z-Disc and I-Band Protein Assemblies. The Journal of cell biology. 153:413-428.

    Becker, J.R., C.M. Dorman, T.M. McClafferty, and S.E. Johnson. 2001. Characterization of a dominant inhibitory E47 protein that suppresses C2C12 myogenesis. Experimental cell research. 267:135-143.

    Benson, D.W., G.M. Silberbach, A. Kavanaugh-McHugh, C. Cottrill, Y. Zhang, S. Riggs, O. Smalls, M.C. Johnson, M.S. Watson, J.G. Seidman, C.E. Seidman, J. Plowden, and J.D. Kugler. 1999. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. The Journal of clinical investigation. 104:1567-1573.

    Berkes, C.A., and S.J. Tapscott. 2005. MyoD and the transcriptional control of myogenesis. Seminars in cell & developmental biology. 16:585-595.

    Bieche, I., C. Tomasetto, C.H. Regnier, C. MoogLutz, M.C. Rio, and R. Lidereau. 1996. Two distinct amplified regions at 17q11-q21 involved in human primary breast cancer. Cancer research. 56:3886-3890.

    Biesiada, E., Y. Hamamori, L. Kedes, and V. Sartorelli. 1999. Myogenic Basic Helix-Loop-Helix Proteins and Sp1 Interact as Components of a Multiprotein Transcriptional Complex Required for Activity of the Human Cardiac α-Actin Promoter. Molecular and cellular biology. 19.

    Boukhelifa, M., S.J. Hwang, J.G. Valtschanoff, R.B. Meeker, A. Rustioni, and C.A. Otey. 2003. A critical role for palladin in astrocyte morphology and response to injury. Molecular and cellular neurosciences. 23:661-668.

    Boukhelifa, M., M. Moza, T. Johansson, A. Rachlin, M. Parast, S. Huttelmaier, P. Roy, B.M. Jockusch, O. Carpen, R. Karlsson, and C.A. Otey. 2006. The proline-rich protein palladin is a binding partner for profilin. The FEBS journal. 273:26-33.

    Boukhelifa, M., M.M. Parast, J.E. Bear, F.B. Gertler, and C.A. Otey. 2004. Palladin is a novel binding partner for Ena/VASP family members. Cell motility and the cytoskeleton. 58:17-29.

    Brentnall, T.A. 2012. Arousal of cancer-associated stromal fibroblasts: palladin-activated fibroblasts promote tumor invasion. Cell adhesion & migration. 6:488-494.

    Brentnall, T.A., L.A. Lai, J. Coleman, M.P. Bronner, S. Pan, and R. Chen. 2012. Arousal of cancer-associated stroma: overexpression of palladin activates fibroblasts to promote tumor invasion. PloS one. 7:e30219.

    Cao, Y., Z. Yao, D. Sarkar, M. Lawrence, G.J. Sanchez, M.H. Parker, K.L. MacQuarrie, J. Davison, M.T. Morgan, W.L. Ruzzo, R.C. Gentleman, and S.J. Tapscott. 2010. Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming. Developmental cell. 18:662-674.

    Carlier, M.F., D. Pantaloni, and E.D. Korn. 1987. The mechanisms of ATP hydrolysis accompanying the polymerization of Mg-actin and Ca-actin. The Journal of biological chemistry. 262:3052-3059.

    Castagnino, P., Z. Biesova, W.T. Wong, F. Fazioli, G.N. Gill, and P.P. Di Fiore. 1995. Direct binding of eps8 to the juxtamembrane domain of EGFR is phosphotyrosine- and SH2-independent. Oncogene. 10:723-729.

    Chew, C.S., X.S. Chen, J.A. Parente, S. Tarrer, C. Okamoto, and H.Y. Qin. 2002. Lasp-1 binds to non-muscle F-actin in vitro and is localized within multiple sites of dynamic actin assembly in vivo. Journal of cell science. 115:4787-4799.

    Crawford, K., R. Flick, L. Close, D. Shelly, R. Paul, K. Bove, A. Kumar, and J. Lessard. 2002. Mice lacking skeletal muscle actin show reduced muscle strength and growth deficits and die during the neonatal period. Molecular and cellular biology. 22:5887-5896.

    Delucia, A.L., B.A. Lewton, R. Tjian, and P. Tegtmeyer. 1983. Topography of Simian Virus-40 a-Protein-DNA Complexes - Arrangement of Pentanucleotide Interaction Sites at the Origin of Replication. J Virol. 46:143-150.

    dos Remedios, C.G., D. Chhabra, M. Kekic, I.V. Dedova, M. Tsubakihara, D.A. Berry, and N.J. Nosworthy. 2003. Actin binding proteins: regulation of cytoskeletal microfilaments. Physiological reviews. 83:433-473.

    Drees, B., E. Friederich, J. Fradelizi, D. Louvard, M.C. Beckerle, and R.M. Golsteyn. 2000. Characterization of the interaction between zyxin and members of the Ena/vasodilator-stimulated phosphoprotein family of proteins. The Journal of biological chemistry. 275:22503-22511.

    Duboscq-Bidot, L., P. Xu, P. Charron, N. Neyroud, G. Dilanian, A. Millaire, V. Bors, M. Komajda, and E. Villard. 2008. Mutations in the Z-band protein myopalladin gene and idiopathic dilated cardiomyopathy. Cardiovascular research. 77:118-125.

    Egelman, E.H., and A. Orlova. 2001. Two conformations of G-actin related to two conformations of F-actin. Results and problems in cell differentiation. 32:95-101.

    Fickett, J.W. 1995. Coordinate positioning of MEF2 and myogenin binding sites.

    Gazdar, A.F., J.S. Butel, and M. Carbone. 2002. SV40 and human tumours: myth, association or causality? Nature reviews. Cancer. 2:957-964.
    Goicoechea, S., D. Arneman, A. Disanza, R. Garcia-Mata, G. Scita, and C.A. Otey. 2006. Palladin binds to Eps8 and enhances the formation of dorsal ruffles and podosomes in vascular smooth muscle cells. Journal of cell science. 119:3316-3324.

    Goicoechea, S.M., D. Arneman, and C.A. Otey. 2008. The role of palladin in actin organization and cell motility. European journal of cell biology. 87:517-525.

    Goicoechea, S.M., B. Bednarski, R. Garcia-Mata, H. Prentice-Dunn, H.J. Kim, and C.A. Otey. 2009. Palladin contributes to invasive motility in human breast cancer cells. Oncogene. 28:587-598.

    Goicoechea, S.M., R. Garcia-Mata, J. Staub, A. Valdivia, L. Sharek, C.G. McCulloch, R.F. Hwang, R. Urrutia, J.J. Yeh, H.J. Kim, and C.A. Otey. 2013. Palladin promotes invasion of pancreatic cancer cells by enhancing invadopodia formation in cancer-associated fibroblasts. Oncogene.

    Goldmann, W.H., and D.E. Ingber. 2002. Intact vinculin protein is required for control of cell shape, cell mechanics, and rac-dependent lamellipodia formation. Biochemical and biophysical research communications. 290:749-755.

    Herrmann, H., H. Bar, L. Kreplak, S.V. Strelkov, and U. Aebi. 2007. Intermediate filaments: from cell architecture to nanomechanics. Nature reviews. Molecular cell biology. 8:562-573.

    Herrmann, H., M. Hesse, M. Reichenzeller, U. Aebi, and T.M. Magin. 2003. Functional complexity of intermediate filament cytoskeletons: from structure to assembly to gene ablation. International review of cytology. 223:83-175.

    Humphries, J.D., P. Wang, C. Streuli, B. Geiger, M.J. Humphries, and C. Ballestrem. 2007. Vinculin controls focal adhesion formation by direct interactions with talin and actin. The Journal of cell biology. 179:1043-1057.

    Innocenti, M., E. Frittoli, I. Ponzanelli, J.R. Falck, S.M. Brachmann, P.P. Di Fiore, and G. Scita. 2003. Phosphoinositide 3-kinase activates Rac by entering in a complex with Eps8, Abi1, and Sos-1. The Journal of cell biology. 160:17-23.

    Janson, L., C. Bark, and U. Pettersson. 1987. Identification of proteins interacting with the enhancer of human U2 small nuclear RNA genes. Nucleic acids research. 15:4997-5016.

    Kaling, M., W. Kugler, K. Ross, C. Zoidl, and G.U. Ryffel. 1991. Liver-specific gene expression: A-activator-binding site, a promoter module present in vitellogenin and acute-phase genes. Molecular and cellular biology. 11:93-101.

    Kel, A.E. 2003. MATCHTM: a tool for searching transcription factor binding sites in DNA sequences. Nucleic acids research. 31:3576-3579.

    Kelly, T., Y. Yan, R.L. Osborne, A.B. Athota, T.L. Rozypal, J.C. Colclasure, and W.S. Chu. 1998. Proteolysis of extracellular matrix by invadopodia facilitates human breast cancer cell invasion and is mediated by matrix metalloproteinases. Clinical & experimental metastasis. 16:501-512.

    Kioka, N., K. Ueda, and T. Amachi. 2002. Vinexin, CAP/ponsin, ArgBP2: a Novel Adaptor Protein Family Regulating Cytoskeletal Organization and Signal Transduction. Cell structure and function. 27:1-7.

    Knudsen, S. 1999. Promoter2.0: for the recognition of PolII promoter sequences. Bioinformatics. 15:356-361.

    Krainc, D., G. Bai, S. Okamoto, M. Carles, J.W. Kusiak, R.N. Brent, and S.A. Lipton. 1998. Synergistic activation of the N-methyl-D-aspartate receptor subunit 1 promoter by myocyte enhancer factor 2C and Sp1. The Journal of biological chemistry. 273:26218-26224.

    Kumar, A., K. Crawford, L. Close, M. Madison, J. Lorenz, T. Doetschman, S. Pawlowski, J. Duffy, J. Neumann, J. Robbins, G.P. Boivin, B.A. O'Toole, and J.L. Lessard. 1997. Rescue of cardiac alpha-actin-deficient mice by enteric smooth muscle gamma-actin. Proceedings of the National Academy of Sciences of the United States of America. 94:4406-4411.

    Kwiatkowski, A.V., F.B. Gertler, and J.J. Loureiro. 2003. Function and regulation of Ena/VASP proteins. Trends in cell biology. 13:386-392.

    Lin, Y.C., N.Y. Yao, C.P. Broedersz, H. Herrmann, F.C. Mackintosh, and D.A. Weitz. 2010. Origins of elasticity in intermediate filament networks. Physical review letters. 104:058101.

    Lin, Y.H., Z.Y. Park, D. Lin, A.A. Brahmbhatt, M.C. Rio, J.R. Yates, 3rd, and R.L. Klemke. 2004. Regulation of cell migration and survival by focal adhesion targeting of Lasp-1. The Journal of cell biology. 165:421-432.

    Luo, H., X. Liu, F. Wang, Q. Huang, S. Shen, L. Wang, G. Xu, X. Sun, H. Kong, M. Gu, S. Chen, Z. Chen, and Z. Wang. 2005. Disruption of palladin results in neural tube closure defects in mice. Molecular and cellular neurosciences. 29:507-515.

    Matys, V. 2003. TRANSFAC(R): transcriptional regulation, from patterns to profiles. Nucleic acids research. 31:374-378.

    Messeguer, X., R. Escudero, D. Farre, O. Nunez, J. Martinez, and M.M. Alba. 2002. PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics. 18:333-334.

    Niebuhr, K., F. Ebel, R. Frank, M. Reinhard, E. Domann, U.D. Carl, U. Walter, F.B. Gertler, J. Wehland, and T. Chakraborty. 1997. A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. The EMBO journal. 16:5433-5444.

    Niedenberger, B.A., V.K. Chappell, E.P. Kaye, R.H. Renegar, and C.B. Geyer. 2013. Nuclear localization of the actin regulatory protein palladin in sertoli cells. Molecular reproduction and development. 80:403-413.

    Nishida, W., M. Nakamura, S. Mori, M. Takahashi, Y. Ohkawa, S. Tadokoro, K. Yoshida, K. Hiwada, K. Hayashi, and K. Sobue. 2002. A triad of serum response factor and the GATA and NK families governs the transcription of smooth and cardiac muscle genes. The Journal of biological chemistry. 277:7308-7317.

    Nwe, T.M., K. Maruyama, and Y. Shimada. 1999. Relation of nebulin and connectin (titin) to dynamics of actin in nascent myofibrils of cultured skeletal muscle cells. Experimental cell research. 252:33-40.

    Offenhauser, N., A. Borgonovo, A. Disanza, P. Romano, I. Ponzanelli, G. Iannolo, P.P. Di Fiore, and G. Scita. 2004. The eps8 family of proteins links growth factor stimulation to actin reorganization generating functional redundancy in the Ras/Rac pathway. Molecular biology of the cell. 15:91-98.

    Olson, E. 1992. Activation of muscle-specific transcription by myogenic helix-loop-helix proteins. Symposia of the Society for Experimental Biology. 46:331-341.

    Otey, C.A., A. Rachlin, M. Moza, D. Arneman, and O. Carpen. 2005. The palladin/myotilin/myopalladin family of actin-associated scaffolds. International review of cytology. 246:31-58.

    Ovcharenko, I., M.A. Nobrega, G.G. Loots, and L. Stubbs. 2004. ECR Browser: a tool for visualizing and accessing data from comparisons of multiple vertebrate genomes. Nucleic acids research. 32:W280-286.

    Parast, M.M., and C.A. Otey. 2000. Characterization of palladin, a novel protein localized to stress fibers and cell adhesions. The Journal of cell biology. 150:643-656.

    Park, S.Y., H.M. Shin, and T.H. Han. 2002. Synergistic interaction of MEF2D and Sp1 in activation of the CD14 promoter. Molecular immunology. 39:25-30.

    Perrin, B.J., and J.M. Ervasti. 2010. The actin gene family: function follows isoform. Cytoskeleton. 67:630-634.

    Pogue-Geile, K.L., R. Chen, M.P. Bronner, T. Crnogorac-Jurcevic, K.W. Moyes, S. Dowen, C.A. Otey, D.A. Crispin, R.D. George, D.C. Whitcomb, and T.A. Brentnall. 2006. Palladin mutation causes familial pancreatic cancer and suggests a new cancer mechanism. PLoS medicine. 3:e516.

    Prestridge, D.S. 1995. Predicting Pol II promoter sequences using transcription factor binding sites. Journal of molecular biology. 249:923-932.

    Qian, X., D.D. Mruk, Y.H. Cheng, and C.Y. Cheng. 2013a. Actin cross-linking protein palladin and spermatogenesis. Spermatogenesis. 3:e23473.

    Qian, X., D.D. Mruk, E.W. Wong, P.P. Lie, and C.Y. Cheng. 2013b. Palladin is a regulator of actin filament bundles at the ectoplasmic specialization in adult rat testes. Endocrinology. 154:1907-1920.

    Rachlin, A.S., and C.A. Otey. 2006. Identification of palladin isoforms and characterization of an isoform-specific interaction between Lasp-1 and palladin. Journal of cell science. 119:995-1004.

    Reese, M.G. 2001. Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Computers & Chemistry. 26:51-56.

    Reinhard, M. 1995. Identification, Purification, and Characterization of a Zyxin-Related Protein that Binds the Focal Adhesion and Microfilament Protein VASP (Vasodilator-Stimulated Phosphoprotein. Proceedings of the National Academy of Sciences. 92:7956-7960.

    Ronty, M., A. Taivainen, M. Moza, G.D. Kruh, E. Ehler, and O. Carpen. 2005. Involvement of palladin and alpha-actinin in targeting of the Abl/Arg kinase adaptor ArgBP2 to the actin cytoskeleton. Experimental cell research. 310:88-98.

    Ronty, M., A. Taivainen, M. Moza, C.A. Otey, and O. Carpen. 2004. Molecular analysis of the interaction between palladin and alpha-actinin. FEBS letters. 566:30-34.

    Rottner, K., M. Krause, M. Gimona, J.V. Small, and J. Wehland. 2001. Zyxin Is not Colocalized with Vasodilator-stimulated Phosphoprotein (VASP) at Lamellipodial Tips and Exhibits Different Dynamics to Vinculin, Paxillin, and VASP in Focal Adhesions. Molecular biology of the cell. 12:3103-3113.

    Schildmeyer, L.A., R. Braun, G. Taffet, M. Debiasi, A.E. Burns, A. Bradley, and R.J. Schwartz. 2000. Impaired vascular contractility and blood pressure homeostasis in the smooth muscle alpha-actin null mouse. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 14:2213-2220.

    Schluter, K., B.M. Jockusch, and M. Rothkegel. 1997. Profilins as regulators of actin dynamics. Bba-Mol Cell Res. 1359:97-109.

    Schreiber, V., C. Moog-Lutz, C.H. Regnier, M.P. Chenard, H. Boeuf, J.L. Vonesch, C. Tomasetto, and M.C. Rio. 1998. Lasp-1, a novel type of actin-binding protein accumulating in cell membrane extensions. Molecular medicine. 4:675-687.

    Scita, G., J. Nordstrom, R. Carbone, P. Tenca, G. Giardina, S. Gutkind, M. Bjarnegard, C. Betsholtz, and P.P. Di Fiore. 1999. EPS8 and E3B1 transduce signals from Ras to Rac. Nature. 401:290-293.
    Scita, G., P. Tenca, L.B. Areces, A. Tocchetti, E. Frittoli, G. Giardina, I. Ponzanelli, P. Sini, M. Innocenti, and P.P. Di Fiore. 2001. An effector region in Eps8 is responsible for the activation of the Rac-specific GEF activity of Sos-1 and for the proper localization of the Rac-based actin-polymerizing machine. Journal of Cell Biology. 154:1031-1044.

    Selcen, D., and A.G. Engel. 2004. Mutations in myotilin cause myofibrillar myopathy. Neurology. 62:1363-1371.

    Tay, P.N., P. Tan, Y. Lan, C.H. Leung, M. Laban, T.C. Tan, H. Ni, J. Manikandan, S.B. Rashid, B. Yan, C.T. Yap, L.H. Lim, Y.C. Lim, and S.C. Hooi. 2010. Palladin, an actin-associated protein, is required for adherens junction formation and intercellular adhesion in HCT116 colorectal cancer cells. International journal of oncology. 37:909-926.

    Tomasetto, C., C. Moog-Lutz, C.H. Regnier, V. Schreiber, P. Basset, and M.C. Rio. 1995. Lasp-1 (MLN 50) defines a new LIM protein subfamily characterized by the association of LIM and SH3 domains. FEBS letters. 373:245-249.

    Wang, B. 1997. ArgBP2, a Multiple Src Homology 3 Domain-containing, Arg/Abl-interacting Protein, Is Phosphorylated in v-Abl-transformed Cells and Localized in Stress Fibers and Cardiocyte Z-disks. Journal of Biological Chemistry. 272:17542-17550.

    Wang, H.V., and M. Moser. 2008. Comparative expression analysis of the murine palladin isoforms. Developmental dynamics : an official publication of the American Association of Anatomists. 237:3342-3351.

    Witke, W. 2004. The role of profilin complexes in cell motility and other cellular processes. Trends in cell biology. 14:461-469.

    Zhang, Y.J., and Y.M. Yang. 2005. Palladin is a key molecule to cell shape and movement. Prog Biochem Biophys. 32:607-611.

    下載圖示 校內:2016-08-30公開
    校外:2016-08-30公開
    QR CODE