簡易檢索 / 詳目顯示

研究生: 鄭元愷
Cheng, Yuan-Kai
論文名稱: 醫療影像軟體開發-三維醫療影像物件之擷取與處理
The Development of Medical Image Software: An Approach to Extraction, Manipulation, and Modification of 3D Objects Based on CT Image
指導教授: 方晶晶
Fang, Jing-Jing
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 127
中文關鍵詞: 平面切割立方體素切割行進方塊法切割預覽醫學影像處理多物件管理擷取重切層
外文關鍵詞: ROI extraction, cutting preview, marching Cubes, volume cutting, surface cutting, multi-object management, medical image processing, re-slicing, segmentation
相關次數: 點閱:106下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究致力於互動三維醫學影像處理程式之開發,提供二維及三維介面供使用者進行醫療影像物件之擷取與處理。研究中採用多文件框架介面(MDI),不但允許使用者一次開啟多個專案,在物件導向式設計支援下,使此研究原始碼具高度可維護性、再利用性及擴充性,本研究將為未來的進階發展架構基礎平台。
    多物件管理為此軟體之主要特色,使用者可在同一個專案內同時處理多個物件,並改變物件的顏色或透明度,提昇複雜影像的可視度。物件透過其立方體素資料(Cuboid Voxel Data)或網格資料(Stereo Lithographic Data) 進行任意截面切割,並展現切面之斷層影像,使用者可任意改變此切平面方位以從各種不同的角度去觀看手術計劃的三維影像。此切層方法亦被應用於為影像重切層(Re-slicing)與三維切割之控制介面。
    本研究之資料結構採用位元編碼方式紀錄立方體素資料,以降低高記憶體需求。三角網格模型則依其空間座標予以分群,允許三維截面切割後快速判斷網格位置,以供切割預覽之用。至於切割後之缺損,本論文提出一改良之行進方塊法,可直接進行補面計算。此平面切割方法可作為立方體素切割法之替代方案,本階段性工作之貢獻為使本發展中的醫學影像軟體具更直覺的三維物件處理功能。

    In this research, the author is devoted to develop an interactive 3D medical image application interface in order to provide the tools of extraction, manipulation, and modification of 3D image objects in both 2D and 3D. Multi document interface (MDI) is adopted as application framework; it allows the users to handle several projects simultaneously. In addition, base on the object oriented design enables the tool capabilities of maintainability, reusability, and extensibility for further usages.
    Multi-object management is one of the key features of this application. The users are allowed to manipulate several objects in the same project simultaneously. Each individual object can be set up multiple colors combined with different layer of transparency, moved freely, and segmented. Besides, it provides a section plane as a handy facility for the users to examine the volumetric image from different point of views. Nevertheless, the technique of section plane generating is also employed to achieve re-slicing or 3D cutting skills.
    In order to reduce high demanding of memory, the bitwise coding method is adopted to store cuboid voxel data. The STL cellular technique is an elaborate data structure that enables the fast classification of polygons for cutting preview. Subsequently an improved marching cubes method is proposed to calculate the slicing face and refill the chips generated from cutting. The surface cutting methods serves as an alternative to the volume cutting, and guarantees that a consistent outcome. The contribution of this staged work is to provide more intuitive 3D object image processing for further need in surgical planning.

    摘要 I Abstract II 誌謝 III Contents IV Table Index VII Figure Index VIII Chapter 1 Introduction 1 1.1. Foreword 1 1.2. Motivation and Goals 2 1.3. Structure of Thesis 4 Chapter 2 Literature Survey 5 2.1. Kernel Techniques 6 2.1.1. Medical Image Processing 6 2.1.2. Computer Graphics Approach 15 2.2. State of the Art 21 2.2.1. Relevant Research 22 2.2.2. Available Software 24 2.2.3. Previous Work 26 2.3. Summary 28 Chapter 3 Development of Medical Image Software 30 3.1. Design Requirements 30 3.1.1. Design Considerations and Use Cases 30 3.1.2. Operations and Activity Diagrams 34 3.2. System Architecture 38 3.2.1. Development Environment 38 3.2.2. Application Framework 39 3.2.3. Data Types and Organization 42 3.3. Functional Modules and Graphical User Interface 50 3.3.1. Design of GUI 51 3.3.2. Medical Image Processing Module 53 3.3.3. Three-Dimensional Visualization Module 58 3.4. Summary 62 Chapter 4 Approach 64 4.1. Data Representations 64 4.1.1. Volume Data 64 4.1.2. STL Cell List 68 4.1.3. 3D Object and Coordinate System 70 4.2. Implementation 73 4.2.1. Image Re-slicing 74 4.2.2. ROI Extraction and Volume Manipulation 76 4.2.3. 3D Planar Cutting 85 4.3. Summary 99 Chapter 5 Results 101 5.1. Visualization 101 5.2. 3D Manipulation 108 5.3. Performances 113 5.4. Summary 116 Chapter 6 Conclusions 118 References 121

    [1] Adams, R. and Bischof, L., “Seeded Region Growing,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 16, pp. 641 -647, 1994.
    [2] Anand, V. B., “Computer Graphic and Geometric Modeling for Engineers,” Johnn Wiley & Sons, 1993.
    [3] Bassil, S. and Rudolf K. Keller, “Software Visualization Tools: Survey and Analysis”, IEEE Proceedings of the 9th International Workshop on Program Comprehension, pp. 7 -11, 2001.
    [4] Berkley, J., Weghorst, S., Gladstone, H., Raugi, G., Berg, D., and Ganter, M., “Fast Finite Element Modeling for Surgical Simulation,” Studies in Health Technology and Informatics, Vol. 62, pp. 55-61, 1999.
    [5] Besl, P.J., “The Free-Form Surface Matching Problem,” Machine Vision for Three-Dimensional Scenes (H. Freeman, Ed.), New York: Academic, 1990.
    [6] Breeuwer, M., Zylka, W., Wadley, J., and Falk, A., “Detection and Correction of Geometric Distortion in 3D CT/MR images,” Proceedings of CARS, 13th, pp. 78-82, 1999.
    [7] Brief, J., Hassfeld, S., Sonnenfeld, U., Persky, N., Krempien, R., Treiber, M., and Mühling, J., “Computer-guided Insertion of Dental Implants―A Clinical Evaluation,” International Congress Series, Vol. 1230, pp. 739-747, 2001.
    [8] Burgert, O., Seifert, S., Salb, T., Gockel, T., Dillmann, R., Hassfeld, S., and Mühling, J., “A VR-System Supporting Symmetry Related Cranio-Maxillofacial Surgery,” Studies in Health Technology and Informatics, Vol. 94, pp. 33-35, 2003.
    [9] Castelli, V. and Bergman, L. D. (Eds.), “Image Data Base – Search and Retrival of Digital Imagery”, Johnn Wiley & Sons, 2002.
    [10] Chang, K.Y., “A Pattern-Oriented Medical Imaging System And Its Task Guide,” PhD. Dissertation, Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, 2002.
    [11] Cordier, F. and Magnenat-Thalmann, N., “Comparison of Two Techniques for Organ Reconstruction Using Visible Human Dataset,” Proceedings of The Second Visible Human Project Conference, 1998.
    [12] Cufí, X., Muñoz, X., Freixenet, J., and Martí, J., “A Concurrent Region Growing Algorithm Guided by Circumscribed Contours,” Proceedings of 15th International Conference on Pattern Recognition, Vol. 1, pp. 432-435, 2000.
    [13] Fuchs, H., Levoy, M., and Pizer, S. M., “Interactive Visualization of 3D Medical Data,” Computer, Vol. 22, pp. 46-51, 1989.
    [14] George, I., Mastrangelo, M., Hoskins, J., Witzke, W., Stich, J., Garrison, J., Witzke, D.B., Nichols, M., and Park, A., “Using Semi-automated Image Processing and Desktop Systems to Incorporate Actual Patient Volumetric Data In Immersive Surgical Planning and Viewing Systems for Multiple Patients,” Studies in Health Technology and Informatics, Vol. 85, pp. 155-159, 2002.
    [15] Girod, S., Teschner, M., Schrell, U., Kevekordes, B., and Girod, B., “Computer-aided 3-D Simulation and Prediction of Craniofacial Surgery: A New Approach,” Journal of Cranio-Maxillofacial Surgery, Vol. 29, pp. 156-158, 2001.
    [16] Glasbey, C.A. and Horgan, G.W., “Image Analysis for the Biological Sciences,” John Wiley and Sons, 1994.
    [17] Hassfeld, S. and Mühling, J., “Computer Assisted Oral and Maxillofacial Surgery—A Review and An Assessment of Technology,” International Journal Oral Maxillofac. Surg., Vol. 30, pp. 2 -13, 2001.
    [18] Heinze, P., Meister, D., Kober, R., and Raczkowsky, J., and Wörn, H., “Atlas-based Segmentation of Pathological Knee Joints,” Studies in Health Technology and Informatics, Vol. 85, pp. 198-203, 2002.
    [19] Herish, J. S., “A Survey of Modeling Presenntations and Their Appliction to Biomedical Visualization and Simulation,” Proceedings of the First Conference on Visualization in Biomedical Computing, pp. 432-441, 1990.
    [20] Ikonomatakis, N., Plataniotis, K.N., Zervakis, M., and Venetsanopoulos, A.N.,” Region Growing and Region Merging Image Segmentation,” International Conference on Digital Signal Processing Proceedings, Vol. 1, pp. 299 -302, 1997.
    [21] Jang, D.P., Hanm, M.H., and Kim, S.I., “Virtual Endoscopy Using Surface Rendering and Perspective Volume Rendering,” Studies in Health Technology and Informatics, Vol. 62, pp. 161-166, 1999.
    [22] Keeve, E., Girod, S., Kikinis, R., and Girod, B., “Deformable Modeling of Facial Tissue for Craniofacial Surgery Simulation,” Computer Aided Surgery, Vol. 3, pp. 228-238, 1998.
    [23] Kling-Petersen, T. and Rydmark, M., “Modeling and Modification of Medical 3D Objects. The Benefit of Using a Haptic Modeling Tool,” Studies in Health Technology and Informatics, Vol. 70, pp. 162-167, 2000.
    [24] Lacroute, P. and Levoy, M., “Fast Volume Rendering Using Shear-Wrap Factorization of View Transformation,” Proc. SIGGRAPH, pp. 451-458, 1994.
    [25] Lambrecht, J.T., Hammer, B., Jacob, A. L., Schiel, H., Hunziker, M., Kreusch, T., and Kliegis, U. “Individual Model Fabrication in Maxillofacial Radiology,” Dento Maxillo Facial Radiology, Vol. 24, pp. 147-154, 1995.
    [26] Laszlo, M. J., “Computational Geometry and Computer Graphic in C++,” Prentice Hall, 1996.
    [27] Liliane dos Santos Machado and Marcelo Knõrich Zuffo, “Development and Evaluation of a Simulator of Invasive Procedures in Pediatric Bone Marrow Transplant,” Studies in Health Technology and Informatics, Vol. 94, pp. 193-195, 2003.
    [28] Lorensen, W. E. and Harvey, E.C., “Marching Cubes: A High Resolution 3D Surface Construction Algorithm,” Computer Graphics, Vol. 21, No. 4, July 1987.
    [29] Magnenat-Thalmann, N., Kang, M., and Goto, T., “Problems and Solutions for The Accurate 3D Functional Modelling of The Hip and Shoulder”, Proc. of IEEE Computer Graphics International Organized by Computer Graphics Society (CGS), 2002.
    [30] Näf, M., Kübler, O., Shenton, M.E. and Székely, G., “Characterization and Recognition of 3D Organ Shape in Medical Image Analysis Using Skeletonization,” Proceedings of IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, 1996.
    [31] Neumann, P., Siebret, D., Faulkner, G., and et al., “Virtual 3D Cutting for Bone Segment Extraction in Maxillofacial Surgery Planning,” Studies in Health Technology and Informatics, Vol. 62, pp. 235-241, 1999.
    [32] Nikolaidis, N. and Pitas I., “3-D Image Processing Algorithms,” Wiley-Interscience, 2001.
    [33] O’Rourke, J., “Computational Geometry in C,” Cambridge University Press, 1994.
    [34] Pflesser, B., Leuwer, R., Tiede, U. and Höhne, K.H., “Planning and Rehearsal of Surgical Interventions in the Volume Model,” Studies in Health Technology and Informatics, Vol. 70, pp. 259-264, 2000.
    [35] Pflesser, B., Petersik, A., Tiede, U., Höhne, K. H., and Leuwer, R., “Volume Cutting for Virtual Petrous Bone Surgery,” Computer Aided Surgery, Vol. 7, pp. 74-83, 2002.
    [36] Shahidi, R., Tombropoulos, R., and Grzeszczuk, R.P., “Clinical Applications of Three-dimensional Rendering of Medical Data Sets,” Proceedings of the IEEE, Vol. 86, pp. 555-568, 1998.
    [37] Sonka, M., Hlavac, V., and Boyle, R., “Image Processing, Analysis, and Machine Vision 2nd ed.,” Brooks/Cole Publishing Company, 1998.
    [38] Teschner, M. and Girod, S., “3-D Simulation of Craniofacial Surgical Procedures,” Studies in Health Technology and Informatics, Vol. 81, pp. 502-503, 2001.
    [39] Tiede, U., Hoehne, K. H., Bomans, M., Pommert A., Riemer, M., and Wiebecke, G., “Investigation of Medical 3D-Rendering Algorithms,” IEEE Computer Graphics and Applications, Vol. 10, pp. 41-53, 1990.
    [40] Verstrken, K., Van Claynembreugel, J., Martens, K., Marchal, G., Van Steenberghe, D., Suetens, P., “An Image-guided Planning System for Endosseous Oral Implants,” IEEE Trans Med Imaging, Vol. 17, pp. 842-852, 1998.
    [41] Voβ, G., Hahn, J.K., Müller, W., and Lindeman, R., “Virtual Cutting of Anatomical Structures,” Studies in Health Technology and Informatics, Vol. 62, pp. 381-383, 1999.
    [42] Wallis, J. W., Miller, T. R., Learner, C. A., and Kleerup, E. C., “Three-Dimensional Display in Nuclear Medicine,” IEEE Transactions on Medical Imaging, Vol. 8, No. 4, pp. 290 -303, 1989.
    [43] Wan, S.Y. and Nung, E., “Seed-Invariant Region Growing: Its Properties and Applications to 3-D Medical CT Image,” Proceedings of International Conference on Image Processing, Vol. 1, pp. 710-713, 2001.
    [44] Watt, A., “3D Computer Graphic,” 3rd ed., Addison-Wesley, 2000.
    [45] WOO, J.H., Kim, Y.S. and Kim, Sun I., “The Correction of MR Distortion with Phantom Studies,” Studies in Health Technology and Informatics, Vol. 62, pp. 388-389, 1999.
    [46] Yoo, S.S., Lee, C.U., Choi, B. G., and Saiviroonporn, P., “Interactive 3-dimensional Segmentation of MRI Data in Personal Computer Environment,” Journal of Neuroscience Methods, Vol. 112, pp. 75-82, 2001.
    [47] Zhao, L., Patel, P.K., Widera, G.E.O., and Harris, G.F., “Development of a Computer Assisted Craniofacial Planning System,” Studies in Health Technology and Informatics, Vol. 94, pp. 410-412, 2003.
    [48]李武松, “顱顏整型手術用植入物之設計與實作,”國立中央大學機械工程研究所碩士論文, 2000.
    [49]李俊毅, “顎面手術輔助空間導引系統之設計與實作,” 國立成功大學機械工程研究所碩士論文, 2002.
    [50]林子源, “實體模型與電腦輔助技術於口腔顎面術前計劃之應用,”國立成功大學機械工程研究所碩士論文, 2000.
    [51]徐榮祥, “腫瘤偵測與顱顏骨骼重建,” 國立中央大學機械工程研究所博士論文, 2002.
    [52]郭泰宏, “醫療影像軟體開發-基礎介面與三維實體模型開發,” 國立成功大學機械工程研究所碩士論文, 2002.
    [53]梁國賢, “貼圖技術報告書,” 國立成功大學機械工程學系虛擬實境與多媒體研究室技術報告, 2002.
    [54] http://mipgsun.mipg.upenn.edu/
    [55] http://www.ablesw.com/3d-doctor/index.html
    [56] http://www.amiravis.com/
    [57] http://www.materialise.com/mimics/main_ENG.html
    [58] http://www.slicer.org/
    [59] http://www.xraydoor.com

    下載圖示 校內:2006-07-23公開
    校外:2008-07-23公開
    QR CODE