簡易檢索 / 詳目顯示

研究生: 黃湘芸
Huang, Shiang-Yun
論文名稱: 儲油地層水錐貫穿時間及臨界產率之研究
Study of Breakthrough Time and Critical Oil Production Rate for a Water Coning Reservoir
指導教授: 林再興
Lin, Zsay-Shing
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 70
中文關鍵詞: 數值模擬臨界產率水錐水錐消退時間水錐貫穿時間
外文關鍵詞: numerical simulation, critical rate, water coning, breakthrough time, water coning decline
相關次數: 點閱:87下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主要目的是發展水錐數值模式,研究在油水兩相地層中水錐形成之現象,預測水錐自油水界面抵達穿孔底部的貫穿時間以及研究在不出水之最大產率(臨界產率)。此外,也研究在關井後水錐消退之現象。
    本研究建立在油水兩相地層部分穿孔井數值模式,以進行水錐貫穿、水錐消退與臨界產率之研究。藉由數值模擬之結果,可得無因次水錐貫穿時間(tBT)D隨無因次產率(qD)變化之關係式為(tBT)D=9.34*10^-8*qD^-12.36。根據這個關係式可得,當無因次水錐貫穿時間趨近於無窮大時,無因次產率(或無因次臨界產率)為qcD=0.13,由該無因次臨界產率可計算現地之臨界產率。本研究也利用數值模擬所得之結果顯示,當水錐接近穿孔區間底部時,則將生產井關井以研究水錐之消退,模擬結果顯示無因次水錐消退時間會隨著無因次產率的漸少而增加。
    將模擬所得之臨界產率與文獻中解析解結果相互比較,顯示模擬結果高於文獻中之解析解之結果。在水錐貫穿時間方面,其模擬結果與Hagoort模式較接近;Sobocinski and Cornelius 模式所得之貫穿將較本文長,而Bournzal and Jeanson模式所得結果則較短。

    The purposes of this study are to develop a numerical model to study water coning in an oil-water reservoir, to predict the water coning breakthrough from oil-water contact (OWC) in a production well and to estimate the critical oil production rate. The critical oil production rate is the maximum oil production rate with no water produced. This study is also to investigate the phenomena of water coning decline after producing well is shutting in.
    A numerical model with a partial-penetration-oil-producing well in an oil-water reservoir is developed for studying the water coning breakthrough, water coning decline and critical production rate.
    Based on the results of numerical study, the relationship between the dimensionless water coning breakthrough time (tBT)D and the dimensionless production rate (qD) can be expressed as (tBT)D=9.34*10^-8*qD^-12.36 . By using this equation, the dimensionless critical rate is 0.13 for the being approached to infinite. For the production well is shutting-in when the water coning approaches to the bottom of the perforation internal, the results show that the dimensionless water coning decline time is increasing as the dimensionless production rate decreasing.
    In comparing the critical rates, the results from simulation are slightly higher then these from analytical solutions existed in literature. The water coning breakthrough time from simulation is close to Hagoort’s model; and the result from numerical model is lower than it from Sobocinski and Cornelius’ model, but higher than it from Bournzal and Jeanson’s model .

    目 錄 第一章 緒 論 ------------------------ 1 1-1 前 言 --------------------------- 1 1-2 研究目的 ------------------------ 2 第二章 文獻回顧 --------------------- 3 2-1 臨界產率 ------------------------ 3 2-2 水錐貫穿時間 -------------------- 6 2-3 水錐消退時間 -------------------- 7 第三章 理論基礎 --------------------- 8 3-1 臨界產率 ------------------------ 8 3-1-1 Meyer and Garder模式 ---------- 9 3-1-2 Schols模式 -------------------- 11 3-1-3 Hoyland模式 ------------------- 14 3-2 水錐貫穿時間 -------------------- 16 3-2-1 Sobocinski and Cornelius 模式-- 17 3-2-2 Bournazel and Jeanson 模式 ---- 19 3-2-3 Hagoort 模式 ------------------ 20 第四章 數值模擬之建立及研究流程 ----- 22 4-1 研究流程 ------------------------ 23 4-2 單相完全穿孔模式之建立及驗證 ---- 25 4-3 單相部分穿孔模式之建立及驗證 ---- 27 4-4 兩相部分穿孔模式之建立 ---------- 28 第五章 結果與討論 ------------------- 30 5-1 水錐貫穿及消退時間 -------------- 30 5-1-1 水錐貫穿時間典型曲線 ---------- 31 5-1-2 水錐貫穿時間模式之研究 -------- 33 5-1-3 水錐消退之研究 ---------------- 34 5-2 水錐臨界產率 -------------------- 35 5-2-1 臨界產率之模擬 ---------------- 36 5-2-2 臨界產率模式之研究 ------------ 37 第六章 結論及建議 ------------------- 39 6-1 結論 ---------------------------- 39 6-2 建議 ---------------------------- 41 參考文獻 ----------------------------- 42 附錄一 ------------------------------- 45 附錄二 ------------------------------- 49

    1.Abass, H.H., Bass, D.M., “The Critical Production Rate in water-coning System.” Paper SPE 17311, p.351-360, 1988.
    2.Ahcene Benamara , Djebbar Tiab, “Gas Coning in Vertical and Horizontal Wells, a Numerical Approach.” Paper SPE 71026, 2001.
    3.Ahmed, T., “Reservoir Engineering Handbook,” 2nd Edition, ISBN:0-88415-770-9, 2003.
    4.Allard, D.R., Chen, S.M., “ Calculation of Water Influx for Bottomwater Drive Reservoirs.” Paper SPE 13170, p.369-379, 1988.
    5.Bilhartz, H.L. and Ramey H.J., “The Combined Effects of Storage, Skin, and Partial Penetration on Well Test Analysis.” Paper SPE6753, 1977.
    6.Bournazel, C. and Jeanson, B.:“Fast Water Coning Evaluation,”paper SPE 3628 presented at the SPE 46th Annual Fall Meeting, New Orleans, Oct. 3-6, 1971.
    7.Chaney, P.E., Noble M.D., Henson, W.L., and Rice, T.D. “How to Perforate Your Well to Prevent Water and Gas Coning.” The Oil and Gas Journal, May 7, p108-114, 1956.
    8.Chierici, C. L., Ciucci, G. M., and Long, G.:“A Systematic Study of Gas and Water Coning by Potentiometric Models.” JPT, August, 923-929, 1964.
    9.CMG,2000.User’s Guide IMEX Advanced Oil/Gas Reservoir Simulator. Computer Modelling Group Ltd., Calgary,Aalberta Canada,746pp.
    10.Ezuka, E.E. Onyekonwu, M.O., “Productivity Enhancement throught Single Well Numerical Modeling.” Paper SPE 88966, 2004.
    11.Hagoort, “Water Coning.” P225-228, 1988.
    12.Kuo, M.C.T., DesBrisay, C.L., “A Simplified Method for Water Coning Predictions.” Paper SPE 12067, 1983.
    13.Lee, J.W.: “Well Testing,” Society of Petroleum Engineering of AIME, Dallas, Texas (1982).
    14.Leif A. Hψyland, Statoil, Paul Papatzacos, Svein M. Skjaeveland, “ Critical Rate for Water Coning: Correlation and Analytical Solution.” Paper SPE 15855, p.495-502, 1989.
    15.Meyer, H.L. and Garder, A.O., “Mechanics of two Immiscible Fluid in Porous Media,” Journal of Applied Physics, Vol. 25, No. 11, p.1400, 1954
    16.Muskat, M, and Wyckoff, R. D.:“An Approximate Theory of Water-Coning in Oil Production,” Trans., AIME(1935)144-163.
    17.Piper, L.D., Gonzalez Jr., F.M., Texas A and M U., “ Calculation of the Critical Oil Production Rate and Optimum Completion Interval.” Paper SPE 16206, p.235-242, 1987.
    18.Recham R., Osisanya, S.O., “Effects of Water Coning on the Performance of Vertical and Horizontal Wells-A Reservoir Simulation Study of Hassi R’mel Field, Algeria.” Paper SPE65506, 2000.
    19.Russell T. Johns, Larry W. Lake, Arnaud M. Delliste, “ Prediction of Capillary Fluid Interfaces During Gas or Water Coning in Vertical Wells.” Paper SPE 77772, 2002.
    20.Schols, R.S., “An Empirical Formula for the Critical Oil Production Rate,” Erdoel Erdgas, Z., Vol. 88, No. 1, p.6-11, January 1972.
    21.Sobocinski, “A Correlation for Predicting Water Coning Time.” SPE 894, 1964.
    22.Wheatley, M.J., “An Approximate Theory of Oil/Water Coning.” Paper SPE 14210, 1985.

    下載圖示 校內:2007-08-24公開
    校外:2007-08-24公開
    QR CODE