簡易檢索 / 詳目顯示

研究生: 翁振榮
Wong, Chen-Jung
論文名稱: 覆晶塑膠球柵陣列構裝體可靠度之研究
Reliability of Flip Chip-Plastic Ball Grid Array Package
指導教授: 吳俊煌
Wu, Gien-Huang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 73
中文關鍵詞: 無鉛銲料溫度循環負載測試疲勞壽命分析
外文關鍵詞: SAC, TCT, fatigue life
相關次數: 點閱:74下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用軟體Mechanic APDL(ANSYS 12.0),建立含鉛焊料接點(Sn37Pb)及無鉛焊料接點(Sn3.8Ag0.7Cu)三種覆晶塑膠球柵陣列(FC-PBGA)構裝體模型,分別為Type1(未加封膠及散熱板)、Type2(加入封膠)及Type3(加入封膠及散熱板)。完整構裝體以中心為原點,在X方向及Y方向幾何對稱,故本文模型為四分之一完整構裝體建構,進行熱循環負載測試(TCT)之模擬,每個循環週期為三十分鐘,共經歷三個循環九十分鐘。
    在本模擬中,構裝體錫焊接點材料 (錫球與凸塊)皆設定為非線性黏塑;其他各部位元件(基板、印刷電路板、封膠、黏膠、底膠、晶片、散熱板)基於亞蘭德(Anand’s) 基本方程式,材料性質與時間、溫度是相依的,故視為彈性。針對無鉛錫球塑性應變模擬之結果,配合溫度和其他常數,使用Modified Coffin-Manson來作疲勞壽命(Fatigue Life)分析,並找出受應力及熱應變影響最大及最小的錫焊接點,以期分析比較不同構裝模型使用壽命之影響。

    We used Mechanic APDL(ANSYS 12.0) to build three types of the leaded(Sn37Pb) and lead-free(Sn3.8Ag0.7Cu) solder of the flip-chip plastic ball grid array. These three types are: Type1 (no heat spreader and no molding compound), Type2 (added molding compound with no heat spreader), Type3 (added heat spreader and molding compound).The model set the chip center as the original point, and both X and Y directions are Geometric symmetry, so that the model is a quarter of the entire model. There are totally 90 minutes to proceed the temperature cycling test(TCT) simulation with 30 minutes for each cycle.

    In the simulations, all the solder bumps and the solder balls are modeled as nonlinear visco-plastic, and time and temperature dependent material based on Anand's constitutive equation, and other materials are treated as linear elasticity. This study uses Modified Coffin-Manson To analyze the fatigue life of the solder joint with plastic strain results from finite element simulations, and finds out the maximum and minimum stress-load and thermal strain on the solder joint. Comparing the effect of fatigue life of leaded or non-leaded solder joint with different types was then performed in this thesis.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XII 第一章 緒論 1 1-1前言 1 1-2 研究背景 2 1-2-1 覆晶塑膠球柵陣列(FC-PBGA) 3 1-2-2 可靠度 4 1-3研究動機與目的 6 1-4文獻回顧 8 1-5 本文架構 10 第二章 理論分析 11 2-1 彈性理論分析[10] 11 2-2線性分析與非線性分析理論 15 2-2-1彈塑性體的變形理論 17 2-2-2非線性收斂準則[11] 18 2-2-3直接疊代法 18 2-2-4牛頓-瑞佛森法(Newton-Raphson Method) 19 2-3 黏彈材料力學模型─Maxwell模型 22 2-4 黏塑材料力學模型─Anand模型[13] 26 2-5 疲勞壽命理論 30 2-5-1 疲勞壽命預測 31 第三章 模型建立與分析 35 3-1前處理 35 3-1-1建立實體模型 35 3-1-2設定分析元素型式 39 3-1-3材料參數的設定 42 3-1-4網格劃分 43 3-2求解 45 3-3後處理 47 第四章 數值模擬 48 4-1前置作業 48 4-2 溫度循環負載模擬實驗 52 第五章 結果與討論 65 5-1 未來展望 70 參考文獻 71 自述 73

    [1] 陳耀茂,可靠度分析與管理,五南書局出版公司,台北市,1996
    [2] A.H.Landzberg, K.C.Norris, “Reliability of Controlled Collapse Interconnections”, IBM Journal of Research and Development, vol.13, no.3, May 1969, pp.226-271.
    [3] Jean.Paul, “Lead-Free and Mixed Assembbly Solder Joint Reliability Trend”, ESPI Inc, Montclair, NJ, 2004, S28-3-12.
    [4] Charles Goldsmith, Da-Yuan Shih, Donald W.Henderson, Jay Bartelo, Karl J.Puttlitz, Paul Lauro, Steve R.Cain, Sung K.Kang, Tae-Kyung Hwang and Timothy Gosselin, “Evaluation of Thermal Fatigue Life and Failure Mechanisms of Sn-Ag-Cu Solder Joints with Reduced Ag Contents”, IBM T.J.Watson Research Cenrer, NY, 2004, pp.664-665.
    [5] Arni Kujala, Esa Hussa, Hun Shen Ng, Jing-En Luan, Kim Young Goh, Tommi Reinikainen, Tong Yan Tee, “Absolute and Relative Fatigue Life Prediction Methodology for Virtual Qualification and Design Enhancement of Lead-Free BGA” Electronic Components and Technology Conference, Finland, 2005, pp.128.
    [6] John Lau, Walter Dauksher, “Effect of Ramp-Time on the Thermal-Fatigue Life of SnAgCu Lead-Free Solder Joint” Agilent Technologies, Inc., 5301 Stevens Creek Boulevard Santa Clara, CA, 2005, pp.1298.
    [7] Chien-Chia Chiu, Chung-Jung Wu, Chih-Tang Peng, Kuo-Ning Chiang, Terry Ku, Kenny Cheng, “Failure Life Prediction and Factorial Design of Lead-Free Flip Chip Package” Journal of the Institute of Engineer, Vol. 30, No. 3, 2007, pp.489.
    [8] K.M.Chen, “Die Crack Study for 40nm Lead Free Flip Chip Packaging” United Microelectronics Co., No. 3, 2009, pp.733.
    [9] Hsing-Yu Chang, Ming-Yi Tsai, Michael Pecht, “Warpage Analysis of Flip-Chip PBGA Packages Subject to Thermal Loading” IEEE transactions on device and materials reliability, Vol. 9, No. 3, september 2009, pp.424.
    [10] Lu Hua, M. et al, Reliability Analysis of Flip Chip Designs Via Computer Simulation, Transactions of the ASME, 2000, 122: 214-219.
    [11] ANSYS 12.0 Online Reference.
    [12] D., Hao, Liu, X., Qin L. and Yan, Thermal-Mechanical Stress And Fatigue Failure Analysis Of A PBGA, 2003, ICEPT2003: 438-442.
    [13] Masazumi, A., Characterization of chip scale packaging materials, 1999 Microelectronics Reliability 39: 1365-1377.
    [14] Jr., L.F.Coffin, “Fatigue at High Temperature”Fatigue and Elevated Temperature”, ASTM STP520,ASTM, 1973, pp.5- 34.
    [15] S.S.Manson, Thermal Stress and Low Cycle Fatigue, New York:McGraw-Hill, 1996.
    [16] W.Engelmaier, “Fatigue Life of Leadless Chip Carrier Solder Joint During Power Cycling” IEEE Trans.Comp.Hybird, Manufact.Technol., Sept.1983, Vol.CHMT-6, pp.52-57.
    [17] Chen Xiangyang, Zhou Dejian, “Modeling and Reliability Analysis of Lead-Free Solder Joints of Bottom Leaded Plastic (BLP) Package” IEEE, June 2006, pp.247-253.
    [18] Shim, K. W. and Lo, W. Y., Solder Fatigue Modeling of Flip-Chip Bumps in Molded Packages, IEEE, 2006, International Electronic Manufacturing Technology:109-114.
    [19] JEDEC Standard No.22-A104D, pp.5 Table1
    [20] Teng-hung Chen, “ reliability analysis and temperature cycling test for system-in-package(sip) ”, Nov 2008, pp.24,47.
    [21] 劉天培, “ Investigation of the Reliability in Thermally Enhanced Flip Chip PBGA Packages ”, NCKUME, 2011,pp.66.

    無法下載圖示 校內:2022-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE