簡易檢索 / 詳目顯示

研究生: 張仲緯
Zhang, Zhong-Wei
論文名稱: 運用系統動態學架構預測電動機車需求與碳排放減少量
Forecasting the Sales and Carbon Emissions Reduction of Electric Scooters by Implementing System Dynamics
指導教授: 張秀雲
Chang, Shiow-Yun
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 65
中文關鍵詞: 電動機車碳排放擴散模型系統動態學
外文關鍵詞: Electric scooter, Carbon emissions, Diffusion model, System dynamics
相關次數: 點閱:104下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 日益嚴重的全球暖化問題,使提倡節能減碳的議題更加受到重視。其中交通工具產生的廢氣,一直被大家視為造成全球暖化和空氣汙染的主因之一,台灣對機車的依賴程度較高,機車持有率高達58.8%。台灣政府近20年來,積極推動電動機車的發展,但電動機車市占率至今不到4%。
    有鑑於此,本研究使用擴散模型對台灣電動機車市場的模型進行預測,常見的擴散模型有Bass、Gompertz、Logistic模型,過往皆廣泛應用於預測產品的銷售趨勢上。本研究將影響台灣電動機車市場發展的因素納入至模型中,加入部分的歷史資料進行模型的配適,再從三款模型結果中挑選最能符合電動機車發展趨勢的模型,採用其估計出的參數進行後續車輛數和碳排放的預測。
    為進行長期的預測,建構具有反饋機制的系統動態模型,根據擴散模型估計之參數結果帶入系統動態模型之中,能使系統動態模型更能符合實際電動機車之需求趨勢。建構系統動態模型,除了能釐清各市場驅動因子如何影響電動機車市場需求,更能透過反饋系統使預測更貼近現實的情境。
    最後透過各情境的結果可以看出補助金額對電動機車需求有很大的影響,補助的開始時間點對電動機車最後需求影響不大,但對補助的總花費有很大的影響,另外政府如果推行相關利基政策進行產業的輔助,推行效果更加顯著;限制燃油機車銷售開始的時間沒有明顯差異,但限制幅度的不同就有明顯的差異,限制幅度越大電動機車需求越高;國內生產毛額成長幅度越高的情境下,電動機車需求也越高。

    In this study, we use diffusion models to predict the growth of the electric scooter market. Common diffusion models include Bass, Gompertz and Logistic models. We use part of the historical data to fit the model, select the model that best fits the future market trend of electric scooters. The best model is used with estimated parameters to forecast demand and the reduction of carbon emissions. To make long-term predictions, we construct a system dynamics model. It can clarify how each market factor affects the demand of electric scooters and make the prediction closer to the real world system. Finally, as the result of the simulation, the subsidy amount has a great impact on the demand of electric scooters. The start of the subsidy has no obvious impact on the demand, but it affects the final total cost. There are obvious differences in the sales level of restricted fuel scooters, with higher restrictions and higher demand. We find the higher the GDP growth rate, accompanied by the higher demand. The greater the market saturation, the higher the demand of electric scooters.

    Key Words: Electric scooter, Carbon emissions, Diffusion model, System dynamics

    摘要 i Extended Abstract ii 誌謝 vi 目錄 vii 表目錄 x 圖目錄 xii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究範圍限制與目的 3 1.3 研究架構與流程 4 第二章 文獻探討 6 2.1 電動機車產業發展概況 6 2.1.1 電動機車的定義與介紹 6 2.1.2 電動機車發展的進程 7 2.1.3 消費者對電動車偏好 9 2.2 碳排放 9 2.3 擴散模型 12 2.3.1 Bass模型 13 2.3.2 Gompertz模型 15 2.3.3 Logistic模型 15 2.3.4 模型估計 16 2.4 系統動態學 17 2.4.1 系統動態學概念 17 2.4.2 系統動態學應用 19 2.5 小結 19 第三章 研究方法 21 3.1 問題描述 21 3.2 模型建立 21 3.3 模型評估 23 3.3.1 模型評估方法 23 3.3.2 Bass模型參數估計與配適結果 24 3.3.3 Gompertz模型參數估計與配適結果 27 3.3.4 Logistic模型參數估計與配適結果 30 3.4 系統動態模型 34 3.4.1 系統動態學建構方式 34 3.4.2 擴散模型因果關係圖 36 3.5 小結 37 第四章 情境模擬與分析 38 4.1 Bass系統動態模型建構 38 4.2 Bass系統動態模型檢驗 40 4.3 情境分析 43 4.3.1 探討補助額度和補助時間之變動 44 4.3.2 探討學習曲線率之變動 48 4.3.3 探討限制燃油機車購買之變動 50 4.3.4 探討國內生產毛額之變動 51 4.3.5 探討市場飽和度之變動 52 4.4 小結 54 第五章 結論 55 5.1研究結論 55 5.2未來研究方向 56 參考文獻 57 附錄 62

    交通部統計處 (2019)。機車使用狀況調查報告。取自https://www.motc.gov.tw/u
    ploaddowndoc?file=survey/201911011142510.pdf&filedisplay=201911011142510.pdf&flag=doc。

    經濟部工業局 (2016)。電動機車產業發展推動計畫。取自https://www.grb.gov.t
    w/search/planDetail?id=592342329
    經濟部工業局 (2018)。電動機車產業發展推動計畫。取自https://www.moeaidb.

    gov.tw/external/ctlr?PRO=executive.ExecutiveInfoView&id=10889&lang=0

    經濟部工業局 (2019)。電動機車產業零組件共通標準推動計畫。取自http://ww
    ww.moeaidb.gov.tw/ctlr?PRO=executive.rwdExecutiveInfoView&id=12319

    經濟部能源局 (2020)。我國燃料燃燒二氧化碳排放統計與分析。取自https://w
    ww.motc.gov.tw/uploaddowndoc?file=survey/201911011142510.pdf&filedisplay=201911011142510.pdf&flag=doc。

    Akhtar, R., Sultana, S., Masud, M. M., Jafrin, N., & Al-Mamun, A. (2021). Consumers’ environmental ethics, willingness, and green consumerism between lower and higher income groups. Resources, Conservation and Recycling, 168, 105274.

    Bass, F. M. (1969). A New Product Growth for Model Consumer Durables. Management Science, 15(5), 215-227.

    Bass, F. M., Krishnan, T. V., & Jain, D. C. (1994). Why the Bass Model Fits without Decision Variables. Marketing Science, 13(3), 203-223.

    Bouachera, T., & Mazraati, M. (2007). Fuel demand and car ownership modelling in India. OPEC Review, 31(1), 27-51.

    Chang, C.-C., Wu, F.-L., Lai, W.-H., & Lai, M.-P. (2016). A cost-benefit analysis of the carbon footprint with hydrogen scooters and electric scooters. International Journal of Hydrogen Energy, 41(30), 13299-13307.

    Chiu, Y.-C., & Tzeng, G.-H. (1999). The market acceptance of electric motorcycles in Taiwan experience through a stated preference analysis. Transportation Research Part D: Transport and Environment, 4(2), 127-146.

    Cox, B. L., & Mutel, C. L. (2018). The environmental and cost performance of current and future motorcycles. Applied Energy, 212, 1013-1024.

    Dargay, J., & Gately, D. (1999). Income's effect on car and vehicle ownership, worldwide: 1960–2015. Transportation Research Part A: Policy and Practice, 33(2), 101-138.

    Davis, J., Eisenhardt, K., & Bingham, C. (2006). Developing Theory Through Simulation Methods. Academy of Management Review, 32.

    Dritsaki, C. (2015). Forecasting real GDP rate through econometric models: an empirical study from Greece. Journal of International Business and Economics, 3(1), 13-19.

    Gryparis, E., Papadopoulos, P., Leligou, H. C., & Psomopoulos, C. S. (2020). Electricity demand and carbon emission in power generation under high penetration of electric vehicles. A European Union perspective. Energy Reports, 6, 475-486.

    Han, J., & Hayashi, Y. (2008). A system dynamics model of CO2 mitigation in China’s inter-city passenger transport. Transportation Research Part D: Transport and Environment, 13(5), 298-305.

    Horsky, D., & Simon, L. S. (1983). Advertising and the Diffusion of New Products. Marketing Science, 2(1), 1-17.

    Kanjanatarakul, O., & Suriya, K. (2012). Comparison of sales forecasting models for an innovative agro-industrial product: Bass model versus logistic function. The Empirical Econometrics and Quantitative Economics Letters, 1(4), 89-106.

    Kwon, T.-h. (2012). Strategic niche management of alternative fuel vehicles: A system dynamics model of the policy effect. Technological Forecasting and Social Change, 79(9), 1672-1680.

    Mahajan, V., Muller, E., & Bass, F. M. (1990). New Product Diffusion Models in Marketing: A Review and Directions for Research. Journal of Marketing, 54(1), 1-26.

    Mahajan, V., & Peterson, R. A. (1978). Innovation Diffusion in a Dynamic Potential Adopter Population. Management Science, 24(15), 1589-1597.

    Mirchi, A., Madani, K., Watkins, D., & Ahmad, S. (2012). Synthesis of System Dynamics Tools for Holistic Conceptualization of Water Resources Problems. Water Resources Management, 26(9), 2421-2442.

    Moro, A., & Helmers, E. (2017). A new hybrid method for reducing the gap between WTW and LCA in the carbon footprint assessment of electric vehicles. The International Journal of Life Cycle Assessment, 22(1), 4-14.

    Nordelöf, A., Messagie, M., Tillman, A.-M., Ljunggren Söderman, M., & Van Mierlo, J. (2014). Environmental impacts of hybrid, plug-in hybrid, and battery electric vehicles—what can we learn from life cycle assessment? The International Journal of Life Cycle Assessment, 19(11), 1866-1890. doi:10.1007/s11367-014-0788-0

    Oliveira, G. D., Roth, R., & Dias, L. C. (2019). Diffusion of alternative fuel vehicles considering dynamic preferences. Technological Forecasting and Social Change, 147, 83-99.

    Richards, F. (1959). A flexible growth function for empirical use. Journal of experimental Botany, 10(2), 290-301.

    Robinson, B., & Lakhani, C. (1975). Dynamic Price Models for New-Product Planning. Management Science, 21(10), 1113-1122.

    Sierzchula, W., Bakker, S., Maat, K., & van Wee, B. (2014). The influence of financial incentives and other socio-economic factors on electric vehicle adoption. Energy Policy, 68, 183-194.

    Srinivasan, V., & Mason, C. H. (1986). Technical Note—Nonlinear Least Squares Estimation of New Product Diffusion Models. Marketing Science, 5(2), 169-178.

    Sterman, J. (2000). Business Dynamics, System Thinking and Modeling for a Complex World. 19.

    Struben, J., & Sterman, J. D. (2008). Transition Challenges for Alternative Fuel Vehicle and Transportation Systems. Environment and Planning B: Planning and Design, 35(6), 1070-1097.

    Tang, B.-j., Wu, X.-f., & Zhang, X. (2013). Modeling the CO2 emissions and energy saved from new energy vehicles based on the logistic-curve. Energy Policy, 57, 30-35.

    Tsai, B.-H. (2013). Predicting the diffusion of LCD TVs by incorporating price in the extended Gompertz model. Technological Forecasting and Social Change, 80(1), 106-131.

    Verhulst, P.-F. (1838). Notice sur la loi que la population suit dans son accroissement. Corresp. Math. Phys., 10, 113-126.

    Wang, J., Lu, H., & Peng, H. (2008). System Dynamics Model of Urban Transportation System and Its Application. Journal of Transportation Systems Engineering and Information Technology, 8(3), 83-89.

    Wang, N., Tang, L., Zhang, W., & Guo, J. (2019). How to face the challenges caused by the abolishment of subsidies for electric vehicles in China? Energy, 166, 359-372.

    Wu, J.-H., Wu, C.-W., Lee, C.-T., & Lee, H.-J. (2015). Green purchase intentions: An exploratory study of the Taiwanese electric motorcycle market. Journal of Business Research, 68(4), 829-833.

    Zeng, Y., Tan, X., Gu, B., Wang, Y., & Xu, B. (2016). Greenhouse gas emissions of motor vehicles in Chinese cities and the implication for China’s mitigation targets. Applied Energy, 184, 1016-1025.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE