| 研究生: |
王暉雄 Wang, Hui-Hsiung |
|---|---|
| 論文名稱: |
熱管散熱模組效能之探討 A study of the thermal performance of heat pipe cooling modules |
| 指導教授: |
周榮華
Chou, Jung-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 對流情況 、直徑 、熱阻 、散熱膏 、根數 、熱管 |
| 外文關鍵詞: | thermal resistance, heat pipe |
| 相關次數: | 點閱:122 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以實驗方法探討風扇搭配熱管的效能表現、散熱膏之熱傳導係數對散熱效益之影響、以及不同直徑與多根熱管散熱效能之差別。實驗時,利用熱電偶量測各元件之溫度計算其熱阻,而散熱效益則以各熱阻作為判斷的依據。
實驗結果顯示,使用熱傳導係數高的散熱膏主要減少接觸熱阻,對於對流熱阻與熱管等效熱阻之影響不大。而管徑小之熱管如4mm與5mm,由於最大熱傳量小,熱傳效果無法彰顯,於自然對流單獨一根使用時,與6mm熱管之溫差約3.3 ℃~10.2 ℃。使用二根以上之熱管 ,其最大熱傳量已足以負荷此發熱功率範圍,於自然對流時,與6mm熱管之溫差約0.7 ℃~5.7 ℃。即使用多根熱管對於管徑較大者如6mm,影響較不顯著,而對管徑比較小者如5mm與4mm熱管,使用多根可比一根明顯提高其效能。而熱管冷凝端之散熱方式對散熱模組效能之影響很大,甚至比熱管管徑與根數之影響還大,最多可降低約60.6 ﹪的熱阻。
The purpose of this investigation is to study experimentally the thermal performance of heat pipes coupling with a cooling fan, the effects of thermal conductivity of thermal grease, and the difference in efficiency of different diameter and multiple heat pipes. The thermal resistance deduced from thermocouple temperature measurements is used as the basis of judging the thermal performance in the heat pipes.
The results indicate that the thermal grease with higher thermal conductivity mainly reduces the contact resistance but not convection resistance and equivalent heat pipe resistance. Because the maximum heat removal capacity of smaller diameter heat pipes ,such as 4mm and 5mm ones ,is small, the thermal performance is limited. When using one heat pipe in natural convection, a single 6mm heat pipe can reduce the temperature by about 3.3 ℃~10.2 ℃, as compared with the 4mm and 5mm one. When using two heat pipes in natural convection, the 6mm heat pipe can reduce the temperature by about 0.7 ℃~5.7 ℃, as compared with the 4mm and 5mm ones. This is because the maximum heat removal capacity of the multiple heat pipes can handle the heat dissipated. Thus using multiple heat pipes for 6mm in diameter, the efficiency is not significantly improved. On the other hand for 4mm and 5mm ones, multiple heat pipes can improve the thermal performance ,as compared with that of a single heat pipe. Cooling the heat pipe condenser section has greater influence than those of the diameter and the number of the heat pipes. Forced convection at the condenser section can reduce thermal resistance by about 60.6% than that of natural convection.
1. PC2000 九月號,旗訊科技股份有限公司,P. 290,2001
2. www.apa.com.tw/pj30pg186.asp?tag=2773
3. G. M. Grover, “Evaporation-Condensation Heat Transfer Device”, US Patent 3229759, Appl. 2, December 1963, Published 18 January 1966.S.B.
4. S.B. Riffat, S.A. Omer, and Xiaoli Ma, “A novel thermoelectric refrigeration system employing heat pipes and a phase change material: an experimental investigation”, SDOS Renewable Energy, pp. 313-323, 2001
5. M. Mochizuki, Y. Saito, K. Goto, and Y. Nguyen, “Hinged Heat Pipes for Cooling Notebook PCs”, 13th IEEE SEMI-THERM Symposium, pp.64-72, 1997
6. H. Xie, M. Aghazadeh, W. Lui, and H. Haley, “Thermal Solutions to Pentium Processors in TCP in Notebooks and Sub-notebook”, IEEE Transactions on Components, Packaging and Manufacturing Technology, Part A, Vol. 19, No. 1. pp. 54-65, March 1996.
7. T. Nguyen, M. Mochizuki, K. Mashiko, and Y. Saito, “Use of Heat pipe/Heat sink for Thermal Management of High Performance CPU’s”, Sixteen IEEE SEMI-THERM Symposium, pp. 76-79, 2000.
8. www.athlon.com.tw/supmain.asp
9. J. Stotani, Y. Susa, S. Tanaka, K. Sato, and Y. Kimura, “Micro Heat Pipe”, Transport Phenomena in Heat and Mass Transfer, pp. 1100-1108, 1992.
10. J. Stotani, K. Nanba, Y. Kasagi, and K. Yoshioka, “Performance of Flat Micro Heat Pipe”, Experimental Heat Transfer, Fluids Mechanics and Thermodynamics, Vol.1, 99. 414-421, 1993.
11. J. Stotani, K. Namba, and N. Kageyama, “A Micro Heat-Pipe for Cooling Notebook PCs”, International Heat Pipe Conference, 1995.
12. I. Sauciuc, M. Mochizuki, K. Mashiko, and Y. Saito, “The Design and Testing of the Super Fiber Heat Pipes for Electronics Cooling Applications”, Sixteen IEEE SEMI-THERM Symposium, pp. 27-32, 2000.
13. S. H. Moon, C. G. Choi, H. Gunn, and T. G. Choy, “Experimental Study on Performance of a Miniature Heat Pipe with Woven-Wired Wick”, Inter Society Conference on Thermal Phenomena, pp. 129-133, 2000.
14. R. Ponnappan, “A Novel Micro-Capillary Groove-Wick Miniature Heat Pipe”, Energy Conversion Engineering Conference and Exhibit, (IECEC) 35th InterSociety, Vol.2, pp. 818-826, 2000.
15. A. Gupta, and G. Upadhya, “Optimization of Heat Pipe Wick Structures for Low Wattage Electronics Cooling Applications”, Advances in Electronic Packaging, ASME, Vol.2, pp.2129-2137, 1999.
16. D.G. Wang, “Cooling Solutions for a No Air Flow and Low Junction Temperature Application”, IEEE/CMPT Electronics Packaging Technology Conference, pp. 133-137, 1998.
17. M. Oomi, T. Fukumoto, and J. Sotani, “A Heat-Pipe System for a Desktop Computer”, Advances in Electronic Packaging, ASME, Vol.2, pp.1951-1955, 1999.
18. K. Take, and R.L. Webb, “Thermal Performance of Integrated Plate Heat Pipe With a Heat Spreader”, Journal of Electronic Packaging, ASME, Vol. 123, pp.189-195, 2001.
19. K. Take, Y. Furukawa, and S. Ushioda, “Fundamental Investigation of Roll Bond Heat Pipes as Heat Spreader Plate for Notebook Computers”, Proc. 6th ITHerm Conference, pp. 501-506, 1998.
20.依日光,熱管技術理論實務,復興出版社,2000
21.A. Faghri, Heat Pipe Science and Technology, Taylor & Francis,
Bristol, 1995.
22.P. D. Dunn, and D. A. Reay, Heat Pipes, 4th, 1994.
23.J. P. Holman, Heat Transfer, The McGraw-Hill Companies, 2000.
24.F. S. Tse, and I. E. Morse, Measurement and Instrumentation in Engineering, Marcel Dekker, Inc, 1989.
25.Measuring Temperature with Thermocouples – a Tutorial, National Instruments, November, 1996.