簡易檢索 / 詳目顯示

研究生: 陳士琦
Chen, Shr-Chi
論文名稱: 相變化材料微粒懸浮流體之相關熱物性質 實驗量測與分析
Measurement and Analysis of Pertinent Thermo-Physical Properties of Phase-Change-Material Suspensions
指導教授: 何清政
Ho, Ching-Jenq
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 97
中文關鍵詞: 過冷現象相變化熱傳
外文關鍵詞: supercooling
相關次數: 點閱:98下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文針對固-液相變化材料微粒懸浮乳液以實驗方式量測其相關熱物性質包括粒徑、黏度、熔點、凝固點、潛熱量等,並進而探討其過冷現象。在相變化材料方面選用十四烷、十八烷以及二十烷。固液相變化的發生會影響乳液黏度隨溫度改變的情況,懸浮微粒為液體時乳液濃度上升對黏度的提高並無如於懸浮微粒為固體時發生黏度急速上升的現象,而是較為平緩的趨勢。乳液系統中的過冷現象主要受懸浮粒子粒徑的影響,粒子的增大將抑制過冷現象。此外,試圖利用雷射消熔法製備低熔點鎵(Ga)金屬的奈米顆粒,實驗結果顯示鎵顆粒形成及大小可經由雷射功率及界面活性劑濃度的改變進而控制之。

    The present study performs an experimental study is mainly concerning pertinent thermophysical properties of solid-liquid phase change material (PCM) suspensions,
    Including the PCM particle size ; viscosity, melting/freezing points, degree of supercooling, and latent heat of fusion of the PCM suspensions. The PCM considered in the experiment includes n-Tetradecane, n-Octadecane, and n-Eicosane. The suspension viscosity is found to be greatly increased with the concentration of PCM, depending on whether the PCM particles exist in the suspension as solid or liquid phase. Significant degree of supercooling has been detected in the PCM
    suspension considered, showing a great bearing with the particle sizes. The increase of particle size tends to suppress markedly the degree of supercooling in the suspension. In addition, attempts have been undertaken to generate nanoparticles of a low-melting-point metal, Gallium, by means of a laser ablation technique. Results clearly demonstrate that the size and configuration of the Gallium nanoparticles generated can be controlled effectively by the power of pulse laser imposed a well as the concentration of surfactant introduced.

    摘要 …………………………………………………………………………… I Abstract …………………………………………………………………… II 致謝 ………………………………………………………………………… III 目錄 ………………………………………………………………………… IV 表目錄 ………………………………………………………………………… VII 圖目錄 ………………………………………………………………………… VIII 符號表 ………………………………………………………………………… XIII 第一章 緒論 ………………………………………………………………… 1 1-1 研究的背景與動機 ……………………………………………………… 1 1-2 文獻回顧 …………………………………………………………………… 2 1-3 研究主題與目的 …………………………………………………………… 8 1-4 本文架構 …………………………………………………………………… 9 第二章 乳液製備及實驗量測 ………………………………………………… 10 2-1 乳液製備 …………………………………………………………………… 10 2-1-1 界面活性劑與HLB ……………………………………………………… 10 2-1-2 製程 ……………………………………………………………………… 11 2-2 黏度量測 …………………………………………………………………… 11 2-2-1 黏度計 ………………………………………………………………… 11 2-2-2 實驗設備 ……………………………………………………………… 12 2-2-3 實驗 …………………………………………………………………… 13 2-3 粒徑量測 …………………………………………………………………… 14 2-3-1 粒徑 …………………………=………………………………………… 14 2-3-2 雷射粒徑分佈分析儀 ………………………………………………… 14 2-3-3 基本參數的介紹 ……………………………………………………… 16 2-3-4 實驗 …………………………………………………………………… 17 2-4 DSC量測 …………………………………………………………………… 18 2-4-1 一般的曲線 …………………………………………………………… 18 2-4-2 溶點、凝固點的定義與溫度校正 …………………………………… 18 2-4-3 實驗 …………………………………………………………………… 21 2-4-3-1溫度校正 ………………………………………………………… 21 2-4-3-2 乳液量測 ………………………………………………………… 21 第三章 乳液熱物性質量測結果與分析 ………………………………… 22 3-1 粒徑 ………………………………………………………………………… 22 3-2 黏度 ………………………………………………………………………… 27 3-2-1 黏度隨溫度改變情況 ………………………………………………… 27 3-2-2 不同溫度下各烷類的黏度情況 ……………………………………… 30 3-2-3 經驗公式 ……………………………………………………………… 40 3-3 DSC量測 …………………………………………………………………… 42 3-3-1校正曲線 ………………………………………………………………… 42 3-3-2 DSC數據整理 ………………………………………………………… 45 3-3-3 過冷現象 ……………………………………………………………… 58 3-3-3-1顆粒粒徑與過冷現象的關連性 …………………………………… 59 3-3-3-2濃度對過冷現象的影響 …………………………………………… 60 第四章 鎵奈米微粒之製備實驗 ………………………………………………… 63 4-1 實驗設備 …………………………………………………………………… 63 4-2 實驗材料 …………………………………………………………………… 64 4-3 實驗步驟 …………………………………………………………………… 65 4-4結果討論 …………………………………………………………………… 66 4-4-1 界面活性劑與否的效應 ……………………………………………… 66 4-4-2 以CTAB為界面活性劑 ………………………………………………… 69 4-4-3 以SDS為界面活性劑 …………………………………………………… 71 4-4-4 擊發時間的影響 ……………………………………………………… 73 第五章 結論與未來展望 ……………………………………………………… 76 參考文獻 …………………………………………………………………………… 79 附錄A ……………………………………………………………………………… 82 附錄B ……………………………………………………………………………… 96

    1.Baxter, G.., ”Process for Making Dual Walled Microcapsules”,
    United States Patent, US3578605, 1971.
    2.Kasza, K. E., Chen, M.M., “Improvement of the Performance of Solar Energy or
    Waste Heat Utilization Systems by Using Phase-Change Slurry as an Enhanced
    Heat-Transfer Storage Fluid”, ASME, J. Solar Energy Engineering, V.107,
    pp.229-236, 1985.
    3.Choi, E., Cho, Y. I., Lorsch, H. G.., “Effects of Emulsifier on Particle Size
    of a Phase Change Material in a Mixture with Water”, Int. com. Heat Mass
    Transfer, Vol. 18, pp.759-766, 1991.
    4.Sanchez, M. C., Berjano, M., Guerrero, A., Brito, E., Gallegos, C., “Evolution
    of the Microstructure and Rheology of O/W Emulsions During the Emulsification
    Process”, The Canadian Journal of Chemical Engineering, Vol. 76, pp.479-485,
    1998.
    5.Siva, A., Vanapalli, J. P., Coupland, J. N., “Stability of Emulsions to
    Dispersed Phase Crystallization: Effect of Oil Type, Dispersed Phase Volume
    Fraction, and Cooling rate”, Colloids and Surfaces A: Physicochemical and
    Engineering Aspects,Vol.204, pp.227-237, 2002.
    6.Royon, G.. G., “Heat Transfer in Paraffin Oil/Water Emulsion Involving
    Supercooling Phenomenon”, Energy Converson and Management , Vol.42,
    pp.2155-2161, 2001.
    7.Choi, E., Cho, Y. I., Lorsch, H. G., “Thermal Analysis of the Mixture of
    Laboratory and Commercial Grades Hexadecane and Tetradecane”, Int. Com. Heat
    Mass Transfer, Vol. 19, pp.1-15,1992.
    8.Choi, E., Akino, N., “Thermal Characteristics of Microencapsulated
    Phase-Change Materials”, Heat Transfer, Vol. 7, 1998.
    9.Chang H. Pa., Choi, J. H., Peck, J. H., Hong, H., “ Consideration on the
    T-history Method for Measuring Heat of Fusion of Phase Change Materials”,
    Korea School of Mechanical and Aerospace Engineering, pp. 63-68, 2001.
    10.Xuan, Y., Li, Q., “Heat Transfer Enhancement of Nanofluids”, International
    Journal of Heat and Fluid Flow, Vol. 21, pp. 58~64, 2000.
    11.Chen Y. H., Yeh C. S., “Laser Ablation Method : Use of Durfactants to Form
    the Dispersed Ag Nanoparticles”, Colloids and Surfaces,pp. 133~138, 2002
    12.Li, B., Kawakami, T., Hiramatsui M., “Enhancement of Organic Nanoparticle
    Preparation by Laser Ablation ”, Applied Surface Science, Vol. 210, pp.
    171~176, 2003.
    13.Mafune F., Kohno J. Y., Takeda Y., Kondow, T., “Formation and Size Control of
    Silver Nanoparticle by Laser Ablation in Aqueous Solution”, J. Phys. Chem. B,
    104, pp. 9111~9117, 2000.
    14.張榮弘, “界面活性劑之乳化特論”, 中日合成化學公司, 第15卷, 第3期, pp.39~48,
    1998.
    15.何泰安,“矩形容器內含懸浮相變化微粒之自然對流熱傳特性實驗研究”, 國立成功大學
    機械工程研究所碩士論文,1999.
    16.趙承琛, “界面科學特論”, 復文書局, 1985.
    17.Yamagishi, Y., Sugeno, T., Ishige, T., Takeuchi, H., Pyatenko, A. T., “An
    Evaluation of Microencapsulated PCM for Use in Cold Energy Transportation
    Medium”, Proc. Int. Energy Conversion Engineering Conference , pp.2077-2083,
    1996.
    18.Hohne, G. W. H., Hemminger, W., Flammersheim, H. J., “Differential Scanning
    Calorimetry”, Springer, 1996
    19.Pal, R., “Evaluation of Theoretical Viscosity Models for Concentrated
    Emulsions at Law Capillary Numbers “, Chemical Engineering Journal, Vol 81,
    pp.827~835, 2001.
    20.林建樑, "流變學", 漢文書局, 1984.

    下載圖示 校內:立即公開
    校外:2003-07-09公開
    QR CODE