| 研究生: |
郭展豪 Kuo, Chan-Hao |
|---|---|
| 論文名稱: |
鹼基(腺嘌呤、胸腺嘧啶及尿嘧啶)
配對物內相對氫鍵強度與芳香性的理論研究 Theoretical Studies of Relative H-Bonding Strengths and Aromatic Character in Pairing of Nucleobases (Nucleobases =Adenine, Thymine and Uracil) |
| 指導教授: |
王小萍
Wang, Shao-Pin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 鹼基 、天然鍵性軌域 、氫鍵 、芳香性 |
| 外文關鍵詞: | Nucleobases, NBO, HOMA, Hydrogen bond |
| 相關次數: | 點閱:68 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
DNA(deoxyribonucleic acid)與 RNA(ribonucleic acid) 鹼基對錯配(mismatch)的情況已有許多人作過此探討。對此,吾人認為鹼基對的分子間氫鍵會影響整個核酸的結構和穩定,因此本文利用密度泛涵理論計算 (DFT) 研究腺嘌呤二聚物 (AA) 、尿嘧啶二聚物(UU) 和配對錯合物 (AT)、(AU) 之能量與芳香性。
藉由各種鹼基之氫鍵錯合物的天然鍵結軌域 (NBO) 分析結果,我們發現氫鍵若由相同原子所形成則可視為同一類,其分子間的距離、E(2) 値和 Δs% 可以有效地與氫鍵的強弱及錯合物的穩定性呈一相關性。而錯配物中氫鍵若不是相同原子所形成將視為不同類,應分開探討其相關性。
除此之外,本文延續先前實驗室引進的芳香性的簡諧振動模型 (Harmonic Oscillator Model of Aromaticity,HOMA)方法分析錯合物的芳香性,而經Krogowski等人證實外環雙鍵取代基會減弱分子的芳香性。鹼基使用羰基配對形成氫鍵後,錯配物因此有了結構與電子特性上的改變使得鹼基分子的環上芳香性特徵受到改變。而依計算後發現,若形成氫鍵的羰基位在其鹼基分子主要貢獻芳香性量(HOMA)的部位,則整體的芳香性會增加較多。
Hydrogen-bonded nucleic acids base pairs substantially contribute to the structure and stability of nucleic acids. Our purpose is to understand the interaction between nucleotide bases. We have studied numerous model systems for dimers and mismatched pairs involving adenine (A), thymine (T), and Uracil (U) at density functional theory (DFT).
The wavefunctions were analyzed by the Natural Bond Orbitals (NBO). If those two-dentate pairing modes were formed by the same functional groups, we can use E(2) (the second order perturbation energy),Δs% (the change of s-orbital contents) and the average intermolecular distances to describe the H-bonding strengths and stability of complexes.
Furthermore, aromaticity of the ring of three compounds and their complexes was analyzed by the aromaticity index HOMA (Harmonic Oscillator Model of Aromacity). Aromaticity of the bases decreases with an increase of the number of double-bond substituents at the rings. Even if hydrogen bonding is much weaker perturbation than the substituent effect, H-bonds involving C=O groups in mismatched pairs may cause an increase of the aromatic character of the rings, but the increasing value is not identical in the pairs which build of the same compound, such as six uracil dimers. It is regard as whether H-bonds contribute to increasing the ring resonance.
1. Kow, Y. W. Free Radical Biol. Med. 2002, 33, 886-893.
2. (a) Shapiro, R.; Pohl, S. H. Biochemistry 1968, 7, 448–455; (b) Shapiro, R.; Shiuey, S. J. Biochim. Biophys. Acta. 1969, 174, 403–405.
3. Caulfeld, J. L.; Wishnok, J. S.; Tannenbaum, S. R. J. Biol. Chem. 1998, 273, 12689-12695.
4. (a) Spence, J. P.; Jenner, J.; Chimel, K.; Aruoma, O. I.; Cross, C. E.; Wu R.; Halliwell, B. FEBS Lett. 1995, 375, 179–182.; (b) Spence, J. P.; Wong, J.; Jenner, J.; Aruoma, O. I.; Cross, C. E.; Halliwell, B. Chem. Res. Toxicol. 1996, 9, 1152–1158.
5. Toyokuni, T. M.; Dizdaroglu, M. Int. J. Cancer 1994, 57, 123–128.
6. (a) Jeffrey, G. A.; Saenger, W. Hydrogen Bonding in Biological Structures, Springer, Berlin, 1991; (b) Jeffrey, G. A. An Introduction to Hydrogen Bonding, Oxford University Press, New York, 1997,Chapter 10; (c) Watson, J. D.; Crick, F. H. C. Nature 1953, 171, 737-738; (d) Saenger, W. Principles of Nucleic Acid Structure, Springer, New York, 1984; (e) Stryer, L. Biochemistry; Freeman: New York, 1988.
7. (a) Lewis, J.; Sankey, P. O. F. Biophys. J. 1995, 69, 1068-1076; (b) Kong, Y. S.; Jhon, Löwdin, M. S. P. O. Int. J. Quantum. Chem. Symp. QB 1987, 14, 189; (c) C. Nagata, M. Aida, J. Mol. Struct.(Theochem) 1988, 179, 451-466; (d) Gould, I. R.; Kollman, P. A. J. Am. Chem. Soc. 1994, 116, 2493-2499; (e) Sponer, J.; Leszczynski, J.; Hobza, P. J. Phys. Chem. 1996, 100, 1965-1974; (f) Sponer, J.; Leszczynski, J.; Hobza, P. J. Biomol. Struct. Dyn. 1996, 14, 117; (g) Sponer, J.; Hobza, P.; Leszczynski, J. in Computational Chemistry. Reviews of Current Trends (Ed.: Leszczynski, J.), World Scientific Publisher, Singapore, 1996, p.185 - 218; (h) Hutter, M.; Clark, T. J. Am. Chem. Soc. 1996, 118, 7574-7577; (i) Brameld, K.; Dasgupta, S.; Goddard III, W. A. J. Phys. Chem. B 1997, 101, 4851-4859; (j) Meyer, M.; Sühnel, J. J. Biomol. Struct. Dyn. 1997, 15, 619; (k) Santamaria, R.; Vázquez, A. J. Comp. Chem. 1994, 15, 981-996; (l) Bertran, J.; Oliva, A.; Rodríguez-Santiago, L.; Sodupe, M. J. Am. Chem. Soc. 1998, 120, 8159-8167.
8. (a) Sim, F.; St-Amant, A.; Papai, I.; Salahub, D. R. J. Am. Chem. Soc. 1992, 114, 4391-4400; (b) Guo, H.; Sirois, S.; Proynov, E. I.; Salahub, D. R. in Theoretical Treatment of Hydrogen Bonding (Ed.: D. Hadzi), Wiley,New York, 1997; (c) Sirois, S.; Proynov, E. I.; Nguyen, D. T.; Salahub, D. R. J. Chem. Phys. 1997, 107, 6770-6781; (d) Rablen, P. R.; Lockman, J. W.; Jorgensen, W. L. J. Phys. Chem. 1998, 102, 3782-3797; (e) Kim, K.; Jordan, K. D. J. Phys. Chem. 1994, 98, 10089-10094;(f) Novoa, J. J.; Sosa, C. J. Phys. Chem. 1995, 99, 15837-15845; (g) Latajka, Z.; Bouteiller, Y. J. Chem. Phys. 1994, 101, 9793-9799; (h) Del Bene, J. E.; Person, W. B.; Szczepaniak, K. J. Phys. Chem. 1995, 99, 10705-10707; (i) Florian, J.; Johnson, B. G. J. Phys. Chem. 1995, 99, 5899-5908; (j) Combariza, J. E.; Kestner, N. R. J. Phys. Chem. 1995, 99, 2717; (l) Lozynski, M.; Rusinska-Roszak, D.; Mack, H.-G. J. Phys. Chem. 1998, 102, 2899-2903; (m) Chandra, A. K.; Nguyen, M. Chem. Phys. 1998, 232, 299-306; (n) Paizs, B.; Suhai, S. J. Comp. Chem. 1998, 19, 575-584; (o) McAllister, M. A. J. Mol. Struct. (Theochem) 1998, 427, 39-53; (p) Pan, Y. P.; McAllister, M. A. J. Mol. Struct. (Theochem) 1998, 427, 221-227; (k) Civalleri, B.; Garrone, E.; Ugliengo, P. J. Mol. Struc. (Theochem) 1997, 419, 227-238; (q) Gonzalez, L.; Mo, O.; Yanez, M. J. Comp. Chem. 1997, 18, 1124-1135.
9. Fonseca Guerra, C.; Bickelhaupt, F. M. Angew. Chem. 1999, 111, 3120-3122; Angew. Chem. Int. Ed. 1999, 38, 2942-2945.
10. (a) Umeyama, H.; Morokuma, K. J. Am. Chem. Soc. 1977, 99, 1316-1332; (b) Yamabe, S.; Morokuma, K. J. Am. Chem. Soc. 1975, 97, 4458-4465; (c) Morokuma, K. Acc. Chem. Res. 1977, 10, 294-300.
11. Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78, 4066-4073.
12. Hamilton, W. C.; Ibers, J. A. Hydrogrn Bonding in Solids, Benjamin, New York, 1968.
13. Harris, S. J.; Janda, K.C.; Novick, S. E.; Klemperer, W. J. Chem. Phys. 1975, 63, 881-884.
14. Fonseca Guerra, C.; Bickelhaupt, F. M.; Snijders, J. G.; Baerends, E. J. Chem. Eur. J. 1999, 5, 3581-3594.
15. Poater, J.; Fradera, X.; Solà, M.; Duran, M.; Simon, S. Chem. Phys. Lett. 2003, 369, 248-255.
16. Fonseca Guerra, C.; Bickelhaupt, F. M. Angew. Chem. 2002, 114, 2194-2197; Angew. Chem. Int. Ed. 2002, 41, 2092-2095.
17. Fonseca Guerra, C.; Baerends, E. J.; Bickelhaupt, F. M. Crystal Growth & Design 2002, 2, 239-245.
18. Mulliken, R. S. J. Phys. Chem., 1933, 1, 492-503; 1935, 3, 517-528; 1937, 7, 339-352.
19. Schleyer, P. v. R.; Kos, A. J. Tetrahedron, 1983, 39, 1141-1150.
20. (a) Wheland, G. W. J. Chem. Phys. 1934, 2, 474-481; (b) Cramer, C. J. In Encyclopedia of Computational Chemistry; Schelyer, P. v. R., Ed.; John Wiley & Sons: Berlin, 1998; p.1294.
21. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-926.
22. (a) Sovers, O. J.; Kern, C. W.; Pitzer, R. M.; Karplus, M. J. Chem. Phys. 1968, 49, 2592-2599; (b) Pauling, L. C. The Nature of the Chemical Bond; 3rd ed.; Cornell University Press: Ithaca, NY, 1960; (c) Hoyland, J. R. J. Am. Chem. Soc. 1968, 90, 2227-2232.
23. (a) Goodman, L.; Gu, H. J. Chem. Phys. 1998, 109, 72-78; (b) Goodman, L.; Pophristic, V.; Weinhold, F. Acc. Chem. Res. 1999, 32, 983-993; (c) Goodman, L.; Gu, H.; Pophristic, V. J. Chem. Phys. 1999, 110, 4268-4275; (d) Pophristic, V.; Goodman, L. Nature 2001, 411, 565-568.
24. Allerhand, A.; Schleyer, P. V. R. J. Am. Chem. Soc. 1963, 85, 1715-1723.
25. (a) Budesinsky, M.; Fiedler, P.; Arnold, Z. Synthesis 1989, 858; (b)Boldeskul, I. E.; Tsymbal, I. F.; Ryltsev, E. V.; Latajka, Z.; Barnes, A. J. J. Mol. Struct. 1997, 436, 167-171; (c) Hobza, P.; Sÿpirko, V.; Havlas, Z.; Buchhold, K.; Reimann, B.; Barth, H. D.; Brutschy, B. Chem. Phys. Lett. 1999, 299, 180-186; (d) Reimann, B.; Buchhold, K.; Vaupel, S.; Brutschy, B.; Havlas, Z.; Hobza, P. J. Phys. Chem. A. 2001, 105, 5560-5566. (e) Delanoye, S. N.; Herrebout, W. A.; van der Veken, B. J. J. Am. Chem. Soc. 2002, 124, 11854-11855.
26. (a) Hobza, P.; Špirko, V.; Selzle, H. L.; Schlag, E. W. J. Phys. Chem. A 1998, 102, 2501; (b) Hobza, P.; Havlas, Z. Chem. Phys. Lett. 1999, 303, 447-452.
27. Alabugin, I. V.; Manoharan, M.; Peabody, S.; Weinhold F. J. Am. Chem. Soc. 2003, 125, 5973-5987.
28. (a) Hobza, P.; Havlas, Z. Chem. Rev. 2000, 100, 4253-4264; (b) Scheiner, S.; Grabowski, S. J.; Kar, T. J. Phys. Chem. A 2001, 105, 10607-10612; (c) Scheiner, S.; Kar, T. J. Phys. Chem. A 2002, 106, 1784-1789.
29. (a) Bent, H. A. Chem. Rev. 1961, 61, 275-311; (b) Lemke, F. R.; Galat, K. J. Youngs, W. J. Organometallics 1999, 18, 1419-1429; (c) Kaupp, M.; Malkina, O. L. J. Chem. Phys. 1999, 108, 3648-3659; (d) Palmer, M. H. J. Mol. Struct. 1997, 405, 179-191; (e) Palmer, M. H. J. Mol. Struct. 1997, 405, 193-205; (f) Jonas, V.; Boehme, C.; Frenking, G. Inorg. Chem. 1996, 35, 2097-2099; (g) Root, D. M.; Landis, C. R.; Cleveland, T. J. Am. Chem. Soc. 1993, 115, 4201-4209; (h) Kaupp, M.; Schleyer, P. V. R. J. Am. Chem. Soc. 1993, 115, 1061-1073; (i) Fantucci, P.; Valenti, V. J. Chem. Soc., Dalton Trans. 1992, 1981-1988; (j) Xie, Y. M.; Schaefer, H. F.; Thrasher, J. S. J. Mol. Struct. 1991, 234, 247-267; (k) Kaupp, M. Chem. Eur. J. 1999, 5, 3631-3643.
30. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. et al., GAUSSIAN 98, Gaussian, Inc., ittsburgh, PA, 1998.
31. Jones, M. Organic Chemistry, 2nd ed.; W. W. Norton Company Inc.: New York, 2000.
32. Schleyer, P. v. R. Chem. Rev. 2001; 101, 1115–1118.
33. Pauling, L. The Nature of the Chemical Bond and Structure of Molecules in Crystals; Cornell University Press: Ithaca, 1960; pp 188ff.
34. (a) Cyranski, M. K.; Krygowski, T. M.; Katritzky, A. R.; Schleyer, P. v. R. J. Org. Chem. 2002, 67, 1333-1338; (b) Cyranski, M. K.; Schleyer, P. v. R.; Krygowski, T. M.; Jiao, H.; Hohlneicher, G. Tetrahedron 2003, 59, 1657-1665; (c) Kruszewski, J.; Krygowski, T. M. Tetrahedron Lett. 1972, 3839-3842; (d) Bird, C. W. Tetrahedron 1985, 41, 1409-1414; (e) Krygowski, T. M. J. Chem. Inf. Comput. Sci. 1993, 33, 70-78; (f) Julg, A.; Francüoise, Ph. Theor. Chim. Acta 1967, 8, 249-259.
35. (a) Flygare, W. H. Chem. Rev. 1974, 74, 653-687; (b) Dauben, H. J.; Wilson, J. D.; Laity, J. L. J. Am. Chem. Soc. 1968, 90, 811-813; (c) Dauben, H. J.; Wilson, J. D.; Laity, J. L. J. Am. Chem. Soc. 1969, 91, 1991-1998; (d) Dauben, H. J.; Wilson, J. D.; Laity, J. L. In Non- Benzenoid Aromatic Compounds; Snyder, J. P., Ed.; Academic Press: New York, 1971; Vol. 2; (e) Lazzeretti, P. Prog. Nucl. Magn. Reson. Spectrosc. 2000, 36, 1-88.
36. (a) Hellmann H. Einfurung in die Quantenchemie. Franz Deuticke: Leipzig, 1937; (b) Feynman RP. Phys. Rev. 1939; 56, 340–343.
37. (a) Krygowski, T.M.; Cyranski, M.K.; Czarnocki, Z, Hafelinger, G.; Katritzky, A.R. Tetrahedron 2000, 56, 1783–1796; (b) Krygowski T.M.; Cyranski M.K; Chem. Rev. 2001, 101, 1385–1420.
38. (a) Krygowski, T. M.; Anulewicz, R.; Jagodzinski, T. Pol. J. Chem. 1998, 72, 439–448; (b) Krygowski, T. M.; Stepien, B.; Anulewicz-Ostrowska, R.; Dziembowska, T. Tetrahedron 1999, 55, 5457–5464.
39. (a) Srinivasan, R.; Feenstra, J.S.; Park, S.T.; Xu, S.; Zewail, A.H. J. Am. Chem. Soc. 2004, 126, 2266–2267; (b) Grabowski, S.J. Monatsh. Chem. 2002, 133, 1373–1380; (c) Grabowski, S.J. J. Phys. Org. Chem. 2003, 16, 797–802; (d) Alkorta, I.; Elguero, J.; Mo, M.; Yanez, M.; Del Bene, J. E. Mol. Phys. 2004; 102, 2563–2574.
40. (a) Krygowski T.M.; Wozniak, K.; Anulewicz, R.; Pawlak, D.; Kolodziejski, W.; Grech, E.; Szady, A.; J. Phys. Chem. A 1997, 101, 9399–9404; (b) Filarowski, A. J. Phys. Org. Chem. 2005, 18, 686–698.
41. (a) Gilli, G.; Bellucci, F.; Ferretti, V.; Bertolasi, V. J. Am. Chem. Soc. 1989, 111, 1023-1028; (b) Gilli, G.; Bertolasi, V.; Ferretti, V.; Gilli, P. Acta Crystallogr. Sect. B 1993, 49, 564.
42. Huggins, M. L. Angew. Chem. 1971, 83, 163-168; Angew. Chem. Int. Ed. Engl. 1971, 10, 147-152.
43. Fonseca Guerra, C.; Bickelhaupt, F. M.; Snijders, J. G.; Baerends, E. J. Chem. Eur. J. 1999, 5, 3581.
44. Cyranski, M. K.; Gilski, M.; Jaskolski M.; Krygowski, M. K. J. Org. Chem. 2003, 68, 8607-8613.
45. Krygowski, T. M.; Szatylowicz, H. Pol. J. Chem. 2004, 78, 1719-1731.
46. Krygowski, T. M.; Szatylowicz, H.; Zachara, J. E. J. Chem. Inf. Comput. Sci. 2004, 44, 2077-2082.
47. Cyranski, M. K.; Krygowski, T. M.; Wisiorowski, M.; Hommes, N. J. R. v. E.; Schleyer, P. v. R. Angew. Chem. Int. Ed. Engl. 1998, 37, 177-180.
48. Krygowski, T. M.; Anulewicz, R.; Cyranski, M. K.; Puchala, A.; Rasala, D. Tetrahedron 1998, 54, 12295-12300.
49. Krygowski, T. M.; Szatyłowicz, H.; Zachara J. E. J. Org. Chem. 2005, 70, 8859-8865.
50. (a) Nugent, W. A.; Harlow, R. L. J. Am. Chem. Soc. 1994, 116, 6142-6148; (b) Roothan, C. C. J. Rev. Mod. Phys. 1951, 23, 69-89.
51. Weeny, R. M.; Dierksen, G.; Nugent, W. A.; Harlow, R. L. J. Chem. Phys. 1968, 49, 4852-4856.
52. Slater, J. C. Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids (McGraw-Hill, New York, 1974).
53. (a) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864-B871; (b) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133-A1138; (c) Salahub, D. R.; Zerner, M. C. Eds. The Challenge of d and f Electrons (ACS, Washington, D.C., 1989) ; (d) Parr, R. G.; Yang, W. Density-functional theory of atoms and molecules (Oxford Univ. Press, Oxford, 1989).
54. (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652; (b) Becke, A. D. Phys. Rev. 1988, A38, 3098-3100.
55. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785-789.
56. (a) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200-206; (b) Wong, N. B.; Cheung, Y. S.; Wu, D. Y.; Ren, Y.; Wang, X.; Tian, A. M.; Li, W. A. J. Mol. Struct.(Theochem) 2000, 507, 153-156; (c) Aubauer, C.; Klapotke, T. M.; Schulz, A. J. Mol. Strust. (Theochem) 2001, 543, 285-297; (d) Yang, W.; Drueckhammer, D. G. J. Am. Chem. Soc. 2001, 123, 11004-11009; (e) Anane, H.; Boutalib, A.; Nebot-Gil I.; Tomas, F. J. Phys. Chem. A 1998, 102, 7070-7073; (f) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1986, 84, 5687-5705; (g) Weinhold, F. J. Mol. Struct.(Theochem) 1997, 398, 181-197; (h) Mitzel, N. W.; Losehand, U. J. Am. Chem. Soc. 1998, 120, 7320-7327; (i) Hobza, P.; Sponer, J.; Cubero, E.; Orozco, M.; Luque, F. J. J. Phys. Chem. B 2000, 104, 6286-6292; (j) Ananthavel, S. P.; Manoharan, M. Chem. Phys. 2001, 269, 49-57; (k) Wilkens, S. J.; Weatler, W. M.; Weinhold, F.; Markley; J. L. J. Am. Chem. Soc. 2002, 124, 1190-1191.
57. Shaik, S.S.; Hiberty, P. C.; Lefour, J. M.; Ohanessian, G. J. Am. Chem. Soc. 1987, 109, 363-374.
58. Mohamed, T. A.; Shabaan, I. A.; Zoghaib, W. M.; Husband, J.; Farag, R. S.; Alajhaz, M. A. J. Mol. Struct. 2009, 938, 263-276.
59. Dawson, R.M.C. et al., Data for Biochemical Research, Oxford, Clarendon Press, 1959.
60. (a) Beak, P.; Bonham, J.; Lee, J. T., Jr. J. Am. Chem. Soc. 1968, 90, 1569-1582. (b) Beak, P.; Lee, J. T., Jr. J. Org. Chem. 1969, 34, 2125-2128; (c) Krygowski, T. M.; Anulewicz, R.; Cyranski, M. K.; Puchała, A.; Rasała, D. Tetrahedron 1998, 54, 12295-12300.
61. Krygowski, T. M.; Stępień, B. T. and Cyrański M. K. Int. J. Mol. Sci. 2005, 6, 45-51
62. Guell, M.; Poater J.; Luis, J. M.; Mo,O.; Yanez, M.; Sola, M. ChemPhysChem 2005, 6, 2552-2561.