簡易檢索 / 詳目顯示

研究生: 劉昌振
Liu, Chang-Chen
論文名稱: 因應CO2減量的煉油業生產排程最適化研究
Optimizing the Refinery Operational Scheduling under the Requirement of CO2 Emission Reduction
指導教授: 吳榮華
Wu, Rong-Hwa
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 149
中文關鍵詞: 煉油製程集群分析線性規劃碳稅
外文關鍵詞: Refining Processes, Clustering, Linear Programming, Carbon Tax
相關次數: 點閱:93下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 煉油廠是由許多的煉油製程所組成,以原油為入料,而有多重產出的聯產品製程架構。在原油的煉製過程中,能將重質的油份轉化成燃料、高價值油品,以及其他的高價值產品產出。不同類型的煉油製程具有相異的單位能耗需求,在煉油廠以原油來煉製有價油品的過程中,會因不同煉量的製程組合,而產生不同的能源耗用結果,從而提供了CO2的減量空間。由於煉油業以追求利潤之最大化為核心,因此本研究建立煉油業線性規劃模型,在利潤最大化的目標下,探討由於碳稅的導入,對煉油架構內各製程的生產排程造成變動的同時,所引起能耗的變化與對CO2減量的影響,及驅使CO2排放減量的碳稅水準。
    本研究結果顯示,當碳稅導入後,低能耗的延遲結焦及其後續的加氫精煉製程的煉量跟著提高,以加深燃料產品的產出深度;而高能耗製程(如觸媒裂解製程)的煉量則隨之降低,同時化工產品產出跟著減少,使得煉油廠傾向燃料型產品產出的方向操作。研究結果顯示,當課稅成本大於減碳成本時,煉油業將藉改變操作策略來達到CO2的減排成果,同時獲取由於碳稅所造成的課稅效果。研究結果亦顯示,當CO2課稅價格在30 美元/公噸-CO2時,可獲得2.63%的減碳效果,以及3.74美元/公噸-CO2的課稅效果,而當課稅價格來到90及150美元/公噸-CO2時,可分別獲的4.31%、8.59%的減碳效果及6.43和19.80美元/公噸-CO2的課稅效果。然而,由於最終需求的產出限制,將限制本架構的煉油廠之CO2減量空間在10%以內。
    本研究同時發現,當CO2的課稅價格在90 美元/公噸-CO2時,煉油廠將採用液化石油氣來替代燃料油做為補充燃料。另外,由於氫氣的製作成本過高,即使課稅價格來到150美元/公噸-CO2的水準,煉油業也將因邊際成本過高,而不會採用氫氣做為補充燃料。

    A refinery is essentially a joint production process system. Due to the complex nature of the process involved, while it converts heavier oils into high quality oil products, fuels and other high value products, it also provides a way to curb carbon dioxide (CO2) emissions. As refineries are profit-seeking businesses, this dissertation used linear programming (LP) model to assess the impact of different taxation levels on CO2 emissions on a refinery’s operational configuration, and energy consumptions for a refining operation, and to discover what the carbon tax should be in order to justify the required changes.
    The result reveals the necessity of making processes, such as the low energy-intensity Delayed Coking process (DCU) combined with hydrotreating, to produce high-quality fuels and petrochemical products in a refinery while carbon tax is imposed. Furthermore, the running capacity of high energy-intensity processes decreased, such as Catalytic Cracking, and refining operation tends to the refinery configuration of oil production which has less petrochemical products. Our finding indicates that this optimized operational plan reduced CO2 emissions while obtaining an efficiency of marginal effect at a cost of break even point. The results show that CO2 emission reduced by 2.63% while obtaining an efficiency gain of 3.74 USD/ton-CO2 at a cost of 30 USD/ton-CO2, and by 4.31% and 8.59% CO2 emission with efficiency gains of 6.43 and 19.80 USD/ton-CO2 at a cost of 90 and 150 USD/ton-CO2, respectively. In addition, the reducing amounts of CO2 emission were limited to less than 10% on purpose to produce certain asmount of designed oil products.
    The results also show that the refinery opts for liquified petroleum gas (LPG) instead of burning fuel oil when emission costs are over 90 USD/ton-CO2, since using hydrogen as a implemented fuel still proves non-beneficial when the CO2 emission costs reach to 150 USD/ton-CO2.

    中文摘要 I 英文摘要 II 誌 謝 III 目 錄 IV 表 目 錄 VI 圖 目 錄 VII 第一章 緒論 1 1.1 研究緣起 1 1.2 研究目的 5 1.3 研究流程與架構 6 1.4 研究範圍與限制 9 第二章 文獻回顧 11 2.1 線性規劃於煉油業的應用 11 2.2 碳稅對CO2的減量關係 13 2.3 本章小結 16 第三章 煉油產業及能耗與溫室氣體排放分佈 19 3.1 煉油產業介紹 20 3.2 原油煉製技術 22 3.3 煉油廠能耗與溫室氣體排放來源分佈 27 3.4 本章小結 29 第四章 研究方法 31 4.1 建立煉油業線性規劃模型 31 4.2 單位能耗設定與集群分析 37 4.2.1 單位能耗設定 37 4.2.2 集群分析 39 4.3 本章小結 42 第五章 煉油業線性規劃模型建立 43 5.1 煉油業線性規劃模型的目標 43 5.2 煉油業線性規劃模型的建立 45 5.2.1 目標函數的設定 46 5.2.2 限制式的設定 49 5.3 本章小結 55 第六章 資料分析及模型參數設定 57 6.1 資料分析 57 6.1.1 資料來源 57 6.1.2 單位能耗與集群分析結果 59 6.2 參數設定 66 6.2.1 模型基礎架構 66 6.2.2 目標函數的參數 69 6.2.3 限制式的參數 74 6.3 本章小結 85 第七章 實證結果與分析 87 7.1 實證模擬結果 87 7.2 實證結果分析 89 7.2.1 煉量變化分析 90 7.2.2 能源使用分析 94 7.2.3 成本分析 97 7.2.4 課稅效果分析 98 7.2.5 綜合分析 101 7.3 本章小結 102 第八章 結論與建議 105 8.1 研究結論與貢獻 106 8.1.1 研究結論 106 8.1.2 研究貢獻 108 8.2 研究建議 110 8.2.1 研究成果上的建議 110 8.2.2 研究限制上的建議 111 參考文獻 113 附錄A 煉油製程分析 121 附錄B 製程單位能耗的集群分析過程 137 附錄C 油品價格一覽表 146 附錄D 各煉油加工技術製程的油品產率設定 149

    中文部份
    1.王雪臣、馮相昭,”溫室氣體減排策略淺論”,環境保護,第414卷,頁12-15,2009。
    2.台塑石化公司網站(http://www.fpcc.com.tw/product/product_make.asp)。
    3.李堅明、曾瓊瑤、李叢禎,”清潔生產機制、知識累積與溫室氣體減量政策之研究”,都市與計畫,第34卷,第1期,頁39-56,2007。
    4.李菁菁,”酸性水單塔低壓汽提工藝能耗分析及節能措施”,煉油技術與工程,第38卷,第11期,頁43-45,2008。
    5.林素貞、呂信賢,”整合能源與環境政策之分析-以台灣地區石油消費結構對環境影響為例”,第五屆環境規劃與管理研討會論文集,1992。
    6.林素貞、盧怡靜,”工業部門能源對CO2、SO2及NOx排放之關聯效應與群洛特性分析”,能源季刊,第34卷,第3期,2004。
    7.侯凱鋒、蔣榮興、嚴錞、李志強,”大型煉油廠能耗特點分析及節能措施探討”,煉油技術與工程,第39卷,第9期,頁46-50,2009。
    8.梁啟源,"我國永續發展之能源價格政策",台灣經濟預測與政策 ,第37卷,第2期,頁1-35,中央研究院經濟研究所,2007。
    9.梁啟源,"能源稅對臺灣能源需求及經濟之影響",台灣經濟預測與政策 ,第40卷,第1期,頁45-78,中央研究院經濟研究所,2009。
    10.郭文豪、許金林,”煉油廠的能耗評價指表與對比”,2004年中國石化節能技術交流會論文集,頁6-10,2004。
    11.陳順宇,”多變量分析(三版)”,華泰書局,2004。
    12.經濟部,”核心議題:核心發展與能源安全”,98年全國能源會議總結報告,2009。
    13.經濟部能源局,”中華民國節約能源要覽 2011年版”,工業技術研究院能源環境研究所,2011。
    14.經濟部能源局,”能源統計年報”,2013。
    15.黃耀輝、蕭代基、李淑媛,”台灣能源稅的建構與規劃”,海峽兩岸能源經濟與政策,財團法人中華經濟研究院出版社,2009。
    16.蔡信行、施義榮,”石油能源之加深利用與技術研究發展(I)”,石油季刊,第42卷,第4期,頁35-55,2006。
    17.蔡信行、施義榮,”石油能源之加深利用與技術研究發展(II)”,石油季刊,第43卷,第2期,頁71-86,2007a。
    18.蔡信行、施義榮,”石油能源之加深利用與技術研究發展(III)”,石油季刊,第43卷,第3期,頁87-100,2007b。
    19.趙建煒,”某大型煉油廠規劃中的節能”,煉油技術與工程,第39卷,第2期,頁55-58, 2009。
    20.劉昌振,”台塑石化煉油廠節能實務”,98年節約能源績優傑出獎觀摩研討會論文集,經濟部能源局,2009。
    21.劉家海、陳清林、王偉、張冰劍,”重油催化裂化裝置節能措施與效果分析”,煉油技術與工程,第39卷,第3期,頁55-60,Mar. 2009。
    22.魏國棟,”氣候變遷與因應經濟政策工具:文獻回顧”,經濟研究,第39卷,第1期,台北大學經濟學系,頁27-69,2003。

    外文部份
    1.Arienti, S., Mancuso, L. and Cotone, P., “IGCC plants to meet the refinery needs of hydrogen and electric power”, 7th European Gasification Conference, Barcelona (Spain), April 2006.
    2.Aldy, J. E., Ley, E. and Parry, I. W. A., “A tax-based approach to slowing global change”, RFF Discussion Paper, 08-26, 2008. Available at SSRN: http://dx.doi.org/10.2139/ssm. 1238943.
    3.Alireza Tehrani Nejad, M., ”Allocation of CO2 emission in petroleum refineries to petroleum joint products: A linear programming model for practical application”, Energy Economics 29, pp.974-997, 2007.
    4.Alireza Tehrani Nejad, M. and Michelot, C., ”A contribution to the linear programming approach to joint cost allocation: Methodology and application”, European Journal of Operational Research 197, pp.999-1011, 2009.
    5.Babusiaux, D. and Pierru, A., “Modeling and allocation of CO2 emissions in a multiproduct industry: The case of oil refining”, Applied Energy 84, pp.828-841, 2007.
    6.Body, R., Krutilla, K. and Viscusi, W. K., “Energy taxation as a policy instrument to reduce CO2 emissions: A net benefit analysis”, Journal of Environmental Economics and Management 29(1), pp.1-24, 1995.
    7.Dupraz, C., ”Refining market updates - Adapting to the new conditions”, Axens Refining Technologies Seminar, Taiwan, March 2010.
    8.Delgado, M., Verdegay, J. L. and Vila, M. A., ”Relating different approaches to solve linear programming problems with imprecise costs”, Fuzzy sets and systems 37, pp.33-42, 1990.
    9.Der, C., ”Rapid excel modeling for the optimization of refinery energy systems”, Annual Meeting AM-08-61, National Petrochemical & Refiners Association, San Diego, CA, March 2008.
    10.Dramam, M., Altinel, I. K., Bajgoric, N., Unal, A. T., and Birgoren, B., “A clone-based graphical modeler and mehematical model generator for optimal production planning in process industries”, European Journal of Operational Research 137, pp. 483-496, 2002.
    11.Farla, J., Block, K. and Schipper, L., “Energy efficiency development in the pulp and paper industry: A cross-country comparsion using physical production data”, Energy Policy 25, pp.745-758, 1997.
    12.Galli, R., “The relationship between energy efficiency and income levels: Forecasting long term energy demand in Asia emerging countries”, The Energy Journal 19(4), pp.85-105, 1998.
    13.Gomes, G. L., Szkle, A. and Schaeffer, R., ”The impact of CO2 taxation on the configuration of new refineries: An application to Brazil”, Energy Policy 37, pp.5519-5529, 2009.
    14.Gromez-Munoz, V. M. and Porta-Gandara, M. A., “Local wind patterns for modeling renewable energy system by means of cluster analysis techniques”, Renewable Energy 25, pp.171-182, 2002.
    15.Gothe-Lundgren, M., Lundgren, J. T. and Persson, J. A., ”An optimization model for refinery product scheduling", Int. J. Production Economics 78, pp.255-270, 2002.
    16.Gunaseelan, P. and Buehle, C., ”Changing US srude imports are driving refinery upgrades”, Oil & Gas Journal, pp.50-56, 2009.
    17.Gunnerud, S. and Foss, B., ”Oil production optimization – A Piecewise linear model, solved with two decomposition strategies”, Computers and Chemical Engineering, doi: 10.1016/j.c ompchemeng.2010.01.019, 2009.
    18.Hahn, R. W., “Greenhouse gas auction and taxes: Some practical consideration”, Reg-Markets Center Working Paper No. 08-12, 2008. Available at SSRN:http://dx.doi.org/10.2139/ssm.1132291.
    19.Jenkins, J., ”Carbon dioxide and refining and challenges”, Annual Meeting AM-08-39, National Petrochemical & Refiners Association, San Diego, CA, March 2008.
    20.Lee, C. F., Lin, S. J. and Lewis, C., “Analysis of the impacts of combining carbon taxation and emission trading on different industry sectors”, Energy Policy 36(2), pp.722-729, 2008
    21.Liu, C. C., Wu, J. H. and Chen, C., “Optimizing the Refinery Operational Configuration: Case in Taxation at CO2 emission”, The Open Petroleum Engineering Journal 6, pp.33-42, 2013.
    22.Meyers, R. A., “Handbook of petroleum refining processes”, Third Edition, McGraw-Hill Education LLC, New York, 2004.
    23.Pierru, A., “Allocation of CO2 emissions of an oil refinery with Aumann-Shapley prices”, Energy Economics 29, pp.563-577, 2007.
    24.Refininf Precessing, “Refining processes 2006 handbook”, Houston, Gulf Publishing Company, 2006。
    25.Shah, N., ”Mathematical programming techniques for crude oil schedules”, Computers & Chemical Engineering 20 (suppl.), pp.1227-1232, 1996.
    26.Shi, M., Li, N., Zhou, S., Yuan, Y. and Ma, G.,” Can China realize CO2 mitigation target toward 2020”, Journal of Resources and Ecology 1(2), pp.145-154, 2010.
    27.Spoor, R. M., ”Low-carbon refinery: Dream or reality”, Hydrocarbon Processing, pp.113-117, November 2008.
    28.Stockle, M. and Bullen, T., ”Integrate refinery carbon dioxide reduction plants plant-wide”, Hydrocarbon Processing, pp.106-111, November 2008.
    29.Symons, E., Proops, J. and Gay, P., “Carbon taxes, consumer demand and carbon dioxides emissions: A simulation analysis for the UK”, Fiscal Studies 15(2), pp.19-43, 1994.
    30.Tice, M., ”Carbon and energy management: Innovative approaches for a responsible energy future”, Annual Meeting AM-08-37, National Petrochemical & Refiners Association, San Diego, CA, March 2008.
    31.Ulstein, N. L., Nygreen, B. and Sagli, J. R., “Tactical planning of offshore petroleum production“, European Journal of Operational Research 176, pp.550-564, 2007.
    32.Wang, H. and Nakata, T, ”Analysis of the market penetration of clean coal technologies and its impacts in China’s electricity sector”, Energy Policy 37, pp.338-351, 2009.
    33.“World refinies-capacities as Jan. 1, 2008”, Oil & Gas Journal, Dec. 24, 2007.
    34.“World refinies-capacities as Jan. 1, 2013”, Oil & Gas Journal, Dec. 3, 2012.
    35.Worrel, E., Price, L., Martin, N., Farla, J. and Schaeffer, R., “Energy intensity in the iron and steel industry: A comparison of physical and economic indicators”, Energy policy 25(7-9), pp.727-744, 1997.
    36.Yuzgec, U., Palazoglu, A. and Romagnoli, J. A., ”Refinery scheduling of crude oil unloading, storage and processing using a model predictive control strategy”, Computers and Chemical Engineering, doi: 10.1016/j.compchemeng.2010.01.009, 2010.
    37.Zhang, B. J. E. and Huaa, B., “Effective MILP model for oil refinery-wide production planning and energy utilization”, Journal of Cleaner Production 15(5), pp.439-448, 2007.

    無法下載圖示 校內:2018-07-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE