| 研究生: |
何宗憲 Ho, Tzong-Shiann |
|---|---|
| 論文名稱: |
登革感染嚴重度之臨床與生物預測因子分析 Clinical and biological predictive factors of severity in dengue infection |
| 指導教授: |
劉清泉
Liu, Ching-Chuan 林以行 Lin, Yee-Shin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 登革熱 、嚴重度 、高移動群組蛋白第一型 、非結構蛋白1 、黃熱病毒屬 、非結構性蛋白1-凝血酶蛋白質複合物 、體外診斷試劑 |
| 外文關鍵詞: | dengue, nonstructural protein 1, high mobility group box-1, severity, flavivirus, in vitro diagnostics, NS1-thrombin complex |
| 相關次數: | 點閱:70 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
登革病毒感染目前被認為是全球最主要的蚊媒傳染病。登革病毒感染的臨床表現相當多樣性,從輕微的發燒,到合併出血、休克均有可能發生。由於目前並無安全有效的疫苗與抗病毒藥物,主要仰賴臨床的早期診斷與支持性療法,若病情進展至登革出血熱/登革休克症候群時,有很高的致死率。因此如何早期預測登革感染的嚴重度與治療嚴重登革感染,一直是全球登革研究的重點所在。我們經由分析急性登革病毒感染病人常見的臨床與實驗室特徵,發現多種有助於早期預測急性登革熱感染的重要指標,包含:白血球低下(leucopenia)、血小板低下(thrombocytopenia)、轉氨酶濃度上升(elevated aminotransferases)、C-反應蛋白下降(low C-reactive protein)、活化部份凝血活酶時間延長(prolonged activated partial thromboplastin time)等結合可達成極高陽性預測率(positive predictive value, 93.1%)。過去的研究亦發現,病毒非結構蛋白1(NS1)和高遷移率族蛋白-1(HMGB1)蛋白與登革感染的疾病嚴重程度可能有關。然而,病毒蛋白與這類先天免疫調節因子之間的互動關係仍不清楚。我們追蹤了不同臨床嚴重度的實驗室確診登革熱患者之動態變化。發現所有登革熱患者的血中HMGB1濃度明顯升高,且與疾病嚴重度有關。 臨床病人之周邊血液單核細胞中發現HMGB1會由細胞核內易位至細胞質,同時伴隨HMGB1 mRNA合成增加;這種現象在嚴重度高的病患最為明顯。為了研究此一現象之機轉,我們使用登革病毒感染人類K562細胞株模式,成功地在體外重現臨床檢體之發現。進一步發現,只有登革和茲卡病毒NS1蛋白可有效誘導K562細胞中HMGB1的細胞內易位,而其他黃病毒的NS1蛋白中則無明顯效果,且NS1中和抗體可逆轉此現象。病毒NS1和HMGB1血中濃度均與登革熱感染的臨床嚴重程度相關,而登革病毒NS1是造成HMGB1細胞內易位之原因,這些發現將有助於了解登革重症發生之致病機轉與治療藥物之研發。
理想上,若能早期診斷登革熱重症,即可以提供有效的病情監控管理,降低併發症與死亡率。 然而,目前現有的檢驗技術尚無法滿足預測登革熱嚴重度的臨床需求。我們亦以偵測病人血清中非結構性蛋白1與凝血酶複合物來發展登革感染的酵素免疫分析法(enzyme-linked immunosorbent assay, ELISA)與側流式免疫分析(lateral flow immunoassay, LFIA)快速診斷套組,經成大醫院的登革病人血清庫進行先期試驗驗證,發現新檢驗試劑之敏感度較市售試劑套組高且可以預測登革重症,此發現已獲得台灣專利,目前持續進行產品優化中。
Dengue has become a globally important mosquito-borne infectious disease. The clinical manifestations of dengue virus infection are quite diverse, ranging from mild fever to hemorrhage and shock. Since there are no effective vaccines and antiviral drugs, it relies mainly on early clinical diagnosis and supportive medical care. If the disease progresses to dengue hemorrhagic fever/dengue shock syndrome, there is a high mortality rate. Therefore, how to predict the severity of dengue infection and treat severe dengue infection early has been the focus of global dengue research. We identified that the combination of leucopenia, thrombocytopenia, elevated aminotransferase, low C-reactive protein and prolonged activated partial thromboplastin time severed as good predictive markers (positive predictive value 93.1%) of laboratory-confirmed dengue during an outbreak in Southern Taiwan. Viral nonstructural protein 1 (NS1) and host high mobility group box-1 (HMGB1) protein were related to the severity of illness in dengue infections. HMGB1 nucleocytoplasmic translocation was also observed in dengue-infected cells. However, the interaction between viral NS1 protein and host HMGB1 remains unclear. Serum HMGB1 levels were elevated in all dengue patients and tended to be higher in those who with severe disease. Serum NS1 levels was also elevated in dengue patients. HMGB1 translocated from the nucleus to the cytoplasm in peripheral blood mononuclear cells (PBMC) of dengue patients, accompanied by an increase in HMGB1 mRNA. Both dengue and Zika viral NS1 proteins could induce intracellular translocation of HMGB1 in human K562 cells, while the NS1 proteins of other flaviviruses have no obvious effects. These findings will help to understand the pathogenesis and develop new treatment for severe dengue. Besides, NS1 was found to form complex with host coagulation factors, i.e. thrombin especially in severe dengue infection. We developed novel diagnostic kits for detecting NS1-thrombin complex using enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay (LFIA). Higher sensitivity for detecting dengue infection is achieved by detecting NS1-thrombin complex. The diagnostic kits could successfully detect all four serotypes of dengue viruses. Serum NS1-thrombin complexes were elevated earlier in fatal dengue cases and correlated well with the clinical deterioration. The newly developed diagnostic kits for dengue severity had good performance in the pilot study.
1. Bhatt, S., et al., The global distribution and burden of dengue. Nature, 2013. 496(7446): p. 504-7.
2. Clyde, K., J.L. Kyle, and E. Harris, Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J Virol, 2006. 80(23): p. 11418-31.
3. Ramos, M.M., et al., Early clinical features of dengue infection in Puerto Rico. Trans R Soc Trop Med Hyg, 2009. 103(9): p. 878-84.
4. Dietz, V.J., et al., Epidemic dengue 1 in Brazil, 1986: evaluation of a clinically based dengue surveillance system. Am J Epidemiol, 1990. 131(4): p. 693-701.
5. Kalayanarooj, S., et al., Early clinical and laboratory indicators of acute dengue illness. J Infect Dis, 1997. 176(2): p. 313-21.
6. Nunes, M.R., et al., Evaluation of an immunoglobulin M-specific capture enzyme-linked immunosorbent assay for rapid diagnosis of dengue infection. J Virol Methods, 2011. 171(1): p. 13-20.
7. Nunes-Araujo, F.R., M.S. Ferreira, and S.D. Nishioka, Dengue fever in Brazilian adults and children: assessment of clinical findings and their validity for diagnosis. Ann Trop Med Parasitol, 2003. 97(4): p. 415-9.
8. Ho, T.S., et al., Clinical and laboratory predictive markers for acute dengue infection. J Biomed Sci, 2013. 20(1): p. 75.
9. Huy, N.T., et al., Factors associated with dengue shock syndrome: a systematic review and meta-analysis. PLoS Negl Trop Dis, 2013. 7(9): p. e2412.
10. Liu C.C., H.K.J., Huang M. C., Lin J. J., Wang S. M., Liu J. W.,Tsai J. J., Huang J. H. , Lin Y. S., Liu H. S., Yeh T. M., Lei H. Y., High Case-Fatality Rate of Adults With Dengue Hemorrhagic Fever During An Outbreak In Non-Endemic Taiwan: Risk Factors For Dengue-Infected Elders. American Journal of Infectious Diseases, 2008. 4(1): p. 10-17.
11. Lin, C.C., et al., Characteristic of dengue disease in Taiwan: 2002-2007. Am J Trop Med Hyg, 2010. 82(4): p. 731-9.
12. Chang, S.F., J.H. Huang, and P.Y. Shu, Characteristics of dengue epidemics in Taiwan. J Formos Med Assoc, 2012. 111(6): p. 297-9.
13. Shu, P.Y., et al., Fever screening at airports and imported dengue. Emerg Infect Dis, 2005. 11(3): p. 460-2.
14. Kuan, M.M. and F.Y. Chang, Airport sentinel surveillance and entry quarantine for dengue infections following a fever screening program in Taiwan. BMC Infect Dis, 2012. 12: p. 182.
15. Guha-Sapir, D. and B. Schimmer, Dengue fever: new paradigms for a changing epidemiology. Emerg Themes Epidemiol, 2005. 2(1): p. 1.
16. Chen, C.C. and H.C. Chang, Predicting dengue outbreaks using approximate entropy algorithm and pattern recognition. J Infect, 2013. 67(1): p. 65-71.
17. Rothman, A.L., Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat Rev Immunol, 2011. 11(8): p. 532-43.
18. Halstead, S.B., Identifying protective dengue vaccines: guide to mastering an empirical process. Vaccine, 2013. 31(41): p. 4501-7.
19. Wan, S.W., et al., Current progress in dengue vaccines. J Biomed Sci, 2013. 20: p. 37.
20. Schlesinger, J.J., M.W. Brandriss, and E.E. Walsh, Protection of mice against dengue 2 virus encephalitis by immunization with the dengue 2 virus non-structural glycoprotein NS1. J Gen Virol, 1987. 68 ( Pt 3): p. 853-7.
21. Amorim, J.H., et al., Protective immunity to DENV2 after immunization with a recombinant NS1 protein using a genetically detoxified heat-labile toxin as an adjuvant. Vaccine, 2012. 30(5): p. 837-45.
22. Martins Sde, T., et al., Dendritic cell apoptosis and the pathogenesis of dengue. Viruses, 2012. 4(11): p. 2736-53.
23. Falconar, A.K., The dengue virus nonstructural-1 protein (NS1) generates antibodies to common epitopes on human blood clotting, integrin/adhesin proteins and binds to human endothelial cells: potential implications in haemorrhagic fever pathogenesis. Arch Virol, 1997. 142(5): p. 897-916.
24. Lin, C.F., et al., Generation of IgM anti-platelet autoantibody in dengue patients. J Med Virol, 2001. 63(2): p. 143-9.
25. Lin, C.F., et al., Antibodies from dengue patient sera cross-react with endothelial cells and induce damage. J Med Virol, 2003. 69(1): p. 82-90.
26. Oishi, K., et al., Correlation between increased platelet-associated IgG and thrombocytopenia in secondary dengue virus infections. J Med Virol, 2003. 71(2): p. 259-64.
27. Saito, M., et al., Association of increased platelet-associated immunoglobulins with thrombocytopenia and the severity of disease in secondary dengue virus infections. Clin Exp Immunol, 2004. 138(2): p. 299-303.
28. Lin, C.F., et al., Endothelial cell apoptosis induced by antibodies against dengue virus nonstructural protein 1 via production of nitric oxide. J Immunol, 2002. 169(2): p. 657-64.
29. Chen, M.C., et al., Deletion of the C-terminal region of dengue virus nonstructural protein 1 (NS1) abolishes anti-NS1-mediated platelet dysfunction and bleeding tendency. J Immunol, 2009. 183(3): p. 1797-803.
30. Alcon, S., et al., Enzyme-linked immunosorbent assay specific to Dengue virus type 1 nonstructural protein NS1 reveals circulation of the antigen in the blood during the acute phase of disease in patients experiencing primary or secondary infections. J Clin Microbiol, 2002. 40(2): p. 376-81.
31. Libraty, D.H., et al., High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. J Infect Dis, 2002. 186(8): p. 1165-8.
32. Beatty, P.R., et al., Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci Transl Med, 2015. 7(304): p. 304ra141.
33. Modhiran, N., et al., Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci Transl Med, 2015. 7(304): p. 304ra142.
34. Glasner, D.R., et al., Dengue virus NS1 cytokine-independent vascular leak is dependent on endothelial glycocalyx components. PLoS Pathog, 2017. 13(11): p. e1006673.
35. Chen, H.R., et al., Macrophage migration inhibitory factor is critical for dengue NS1-induced endothelial glycocalyx degradation and hyperpermeability. PLoS Pathog, 2018. 14(4): p. e1007033.
36. Huang, Y.H., et al., Activation of coagulation and fibrinolysis during dengue virus infection. J Med Virol, 2001. 63(31): p. 247-51.
37. Chuang, Y.C., et al., Antibodies against thrombin in dengue patients contain both anti-thrombotic and pro-fibrinolytic activities. Thromb Haemost, 2013. 110(2): p. 358-65.
38. Lin, S.W., et al., Dengue virus nonstructural protein NS1 binds to prothrombin/thrombin and inhibits prothrombin activation. J Infect, 2012. 64(3): p. 325-34.
39. Chuang, Y.C., et al., Re-evaluation of the pathogenic roles of nonstructural protein 1 and its antibodies during dengue virus infection. J Biomed Sci, 2013. 20: p. 42.
40. Chen, L., et al., Correlation of serum levels of macrophage migration inhibitory factor with disease severity and clinical outcome in dengue patients. American Journal of Tropical Medicine and Hygiene, 2006. 74(1): p. 142-147.
41. Chuang, Y.C., et al., Macrophage migration inhibitory factor induced by dengue virus infection increases vascular permeability. Cytokine, 2011. 54(2): p. 222-31.
42. Lai, Y.C., et al., Antibodies Against Modified NS1 Wing Domain Peptide Protect Against Dengue Virus Infection. Sci Rep, 2017. 7(1): p. 6975.
43. Chen, H.R., Y.C. Lai, and T.M. Yeh, Dengue virus non-structural protein 1: a pathogenic factor, therapeutic target, and vaccine candidate. J Biomed Sci, 2018. 25(1): p. 58.
44. Lei, H.Y., et al., Immunopathogenesis of dengue virus infection. J Biomed Sci, 2001. 8(5): p. 377-88.
45. Page, A.V. and W.C. Liles, Biomarkers of endothelial activation/dysfunction in infectious diseases. Virulence, 2013. 4(6): p. 507-16.
46. Rathakrishnan, A., et al., Cytokine expression profile of dengue patients at different phases of illness. PLoS One, 2012. 7(12): p. e52215.
47. Malavige, G.N., et al., Serum IL-10 as a marker of severe dengue infection. BMC Infect Dis, 2013. 13(1): p. 341.
48. Kumar, Y., et al., Serum proteome and cytokine analysis in a longitudinal cohort of adults with primary dengue infection reveals predictive markers of DHF. PLoS Negl Trop Dis, 2012. 6(11): p. e1887.
49. Kang, R., et al., HMGB1 as an autophagy sensor in oxidative stress. Autophagy, 2011. 7(8): p. 904-6.
50. Allonso, D., et al., High mobility group box 1 protein as an auxiliary biomarker for dengue diagnosis. Am J Trop Med Hyg, 2013. 88(3): p. 506-9.
51. Wang, H., H. Yang, and K.J. Tracey, Extracellular role of HMGB1 in inflammation and sepsis. J Intern Med, 2004. 255(3): p. 320-31.
52. Wang, H., et al., HMG-1 as a late mediator of endotoxin lethality in mice. Science, 1999. 285(5425): p. 248-51.
53. Yang, H., H. Wang, and K.J. Tracey, HMG-1 rediscovered as a cytokine. Shock, 2001. 15(4): p. 247-53.
54. Czura, C.J., H. Yang, and K.J. Tracey, High mobility group box-1 as a therapeutic target downstream of tumor necrosis factor. J Infect Dis, 2003. 187 Suppl 2: p. S391-6.
55. Yang, H., et al., Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci U S A, 2004. 101(1): p. 296-301.
56. Erlandsson Harris, H. and U. Andersson, Mini-review: The nuclear protein HMGB1 as a proinflammatory mediator. Eur J Immunol, 2004. 34(6): p. 1503-12.
57. Pisetsky, D.S., H. Erlandsson-Harris, and U. Andersson, High-mobility group box protein 1 (HMGB1): an alarmin mediating the pathogenesis of rheumatic disease. Arthritis Res Ther, 2008. 10(3): p. 209.
58. Bianchi, M.E. and A.A. Manfredi, High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev, 2007. 220: p. 35-46.
59. Chen, L.C., et al., Dengue virus infection induces passive release of high mobility group box 1 protein by epithelial cells. J Infect, 2008. 56(2): p. 143-50.
60. Kamau, E., et al., Dengue virus infection promotes translocation of high mobility group box 1 protein from the nucleus to the cytosol in dendritic cells, upregulates cytokine production and modulates virus replication. J Gen Virol, 2009. 90(Pt 8): p. 1827-35.
61. Sha, Y., et al., HMGB1 develops enhanced proinflammatory activity by binding to cytokines. J Immunol, 2008. 180(4): p. 2531-7.
62. Pang, J., et al., Progress and Challenges towards Point-of-Care Diagnostic Development for Dengue. J Clin Microbiol, 2017. 55(12): p. 3339-3349.
63. Wan, S.W., et al., Therapeutic Effects of Monoclonal Antibody against Dengue Virus NS1 in a STAT1 Knockout Mouse Model of Dengue Infection. J Immunol, 2017. 199(8): p. 2834-2844.
64. Dejnirattisai, W., et al., Cross-reacting antibodies enhance dengue virus infection in humans. Science, 2010. 328(5979): p. 745-8.
65. Sabchareon, A., et al., Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: a randomised, controlled phase 2b trial. Lancet, 2012. 380(9853): p. 1559-67.
66. Wang, S.F., et al., Consecutive large dengue outbreaks in Taiwan in 2014-2015. Emerg Microbes Infect, 2016. 5(12): p. e123.
67. Beatty, M.E., et al., Best practices in dengue surveillance: a report from the Asia-Pacific and Americas Dengue Prevention Boards. PLoS Negl Trop Dis, 2010. 4(11): p. e890.
68. WHO, Dengue: Guidelines for diagnosis, treatment, prevention and control. 2009, World Health Organization: Geneva.
69. Narvaez, F., et al., Evaluation of the traditional and revised WHO classifications of Dengue disease severity. PLoS Negl Trop Dis, 2011. 5(11): p. e1397.
70. Ho, T.S., et al., Knowledge, attitude, and practice of dengue disease among healthcare professionals in southern Taiwan. J Formos Med Assoc, 2013. 112(1): p. 18-23.
71. Garcia, G., et al., Asymptomatic dengue infection in a Cuban population confirms the protective role of the RR variant of the FcgammaRIIa polymorphism. Am J Trop Med Hyg, 2010. 82(6): p. 1153-6.
72. Sierra, B., et al., Secondary heterologous dengue infection risk: Disequilibrium between immune regulation and inflammation? Cell Immunol, 2010. 262(2): p. 134-40.
73. Lee, V.J., et al., Predictive value of simple clinical and laboratory variables for dengue hemorrhagic fever in adults. J Clin Virol, 2008. 42(1): p. 34-9.
74. Chadwick, D., et al., Distinguishing dengue fever from other infections on the basis of simple clinical and laboratory features: application of logistic regression analysis. J Clin Virol, 2006. 35(2): p. 147-53.
75. Peeling, R.W., et al., Evaluation of diagnostic tests: dengue. Nat Rev Microbiol, 2010. 8(12 Suppl): p. S30-8.
76. Wang, C.C., et al., Differences in clinical and laboratory characteristics and disease severity between children and adults with dengue virus infection in Taiwan, 2002. Trans R Soc Trop Med Hyg, 2009. 103(9): p. 871-7.
77. Shepard, D.S., E.A. Undurraga, and Y.A. Halasa, Economic and disease burden of dengue in Southeast Asia. PLoS Negl Trop Dis, 2013. 7(2): p. e2055.
78. Suaya, J.A., et al., Cost of dengue cases in eight countries in the Americas and Asia: a prospective study. Am J Trop Med Hyg, 2009. 80(5): p. 846-55.
79. Chaiyaratana, W., et al., Evaluation of dengue nonstructural protein 1 antigen strip for the rapid diagnosis of patients with dengue infection. Diagn Microbiol Infect Dis, 2009. 64(1): p. 83-4.
80. Thein, S., et al., Risk factors in dengue shock syndrome. Am J Trop Med Hyg, 1997. 56(5): p. 566-72.
81. Thein, T.L., et al., Utilities and limitations of the World Health Organization 2009 warning signs for adult dengue severity. PLoS Negl Trop Dis, 2013. 7(1): p. e2023.
82. Srikiatkhachorn, A. and S. Green, Markers of dengue disease severity. Curr Top Microbiol Immunol, 2010. 338: p. 67-82.
83. Kurane, I. and F.E. Ennis, Immunity and immunopathology in dengue virus infections. Semin Immunol, 1992. 4(2): p. 121-7.
84. Huang, Y.H., et al., Dengue virus infects human endothelial cells and induces IL-6 and IL-8 production. Am J Trop Med Hyg, 2000. 63(1-2): p. 71-5.
85. Bosch, I., et al., Increased production of interleukin-8 in primary human monocytes and in human epithelial and endothelial cell lines after dengue virus challenge. J Virol, 2002. 76(11): p. 5588-97.
86. Navarro-Sanchez, E., P. Despres, and L. Cedillo-Barron, Innate immune responses to dengue virus. Arch Med Res, 2005. 36(5): p. 425-35.
87. Wang, H., et al., Potential role of high mobility group box 1 in viral infectious diseases. Viral Immunol, 2006. 19(1): p. 3-9.
88. Barqasho, B., et al., Implications of the release of high-mobility group box 1 protein from dying cells during human immunodeficiency virus type 1 infection in vitro. J Gen Virol, 2010. 91(Pt 7): p. 1800-9.
89. Chu, J.J. and M.L. Ng, The mechanism of cell death during West Nile virus infection is dependent on initial infectious dose. J Gen Virol, 2003. 84(Pt 12): p. 3305-14.
90. Joseph, T., et al., Mechanism of cell death during infectious salmon anemia virus infection is cell type-specific. J Gen Virol, 2004. 85(Pt 10): p. 3027-36.
91. Allonso, D., et al., Elevated serum levels of high mobility group box 1 (HMGB1) protein in dengue-infected patients are associated with disease symptoms and secondary infection. J Clin Virol, 2012. 55(3): p. 214-9.
92. Bi, X., et al., Heat shock protein 27 inhibits HMGB1 translocation by regulating CBP acetyltransferase activity and ubiquitination. Mol Immunol, 2019. 108: p. 45-55.
93. Wang, Y., L. Wang, and Z. Gong, Regulation of Acetylation in High Mobility Group Protein B1 Cytosol Translocation. DNA Cell Biol, 2019.
94. Youn, J.H. and J.S. Shin, Nucleocytoplasmic shuttling of HMGB1 is regulated by phosphorylation that redirects it toward secretion. J Immunol, 2006. 177(11): p. 7889-97.
95. Zainal, N., et al., Resveratrol treatment reveals a novel role for HMGB1 in regulation of the type 1 interferon response in dengue virus infection. Sci Rep, 2017. 7: p. 42998.
96. Mackenzie, J.M., M.K. Jones, and P.R. Young, Immunolocalization of the dengue virus nonstructural glycoprotein NS1 suggests a role in viral RNA replication. Virology, 1996. 220(1): p. 232-40.
97. Avirutnan, P., et al., Binding of flavivirus nonstructural protein NS1 to C4b binding protein modulates complement activation. J Immunol, 2011. 187(1): p. 424-33.
98. Oliveira, E.R.A., et al., Dengue fatal cases present virus-specific HMGB1 response in peripheral organs. Sci Rep, 2017. 7(1): p. 16011.
99. Song, H., et al., Zika virus NS1 structure reveals diversity of electrostatic surfaces among flaviviruses. Nat Struct Mol Biol, 2016. 23(5): p. 456-8.
100. Glasner, D.R., et al., The Good, the Bad, and the Shocking: The Multiple Roles of Dengue Virus Nonstructural Protein 1 in Protection and Pathogenesis. Annu Rev Virol, 2018. 5(1): p. 227-253.
101. Xu, J., et al., Macrophage endocytosis of high-mobility group box 1 triggers pyroptosis. Cell Death Differ, 2014. 21(8): p. 1229-39.
102. Kang, R., et al., HMGB1: a novel Beclin 1-binding protein active in autophagy. Autophagy, 2010. 6(8): p. 1209-11.
103. Zhu, X., et al., Cytosolic HMGB1 controls the cellular autophagy/apoptosis checkpoint during inflammation. J Clin Invest, 2015. 125(3): p. 1098-110.
104. Davie, E.W., K. Fujikawa, and W. Kisiel, The coagulation cascade: initiation, maintenance, and regulation. Biochemistry, 1991. 30(43): p. 10363-70.
105. Lin, Y.S., et al., Molecular mimicry between virus and host and its implications for dengue disease pathogenesis. Exp Biol Med (Maywood), 2011. 236(5): p. 515-23.
校內:2024-08-27公開