簡易檢索 / 詳目顯示

研究生: 鄭揚霖
Cheng, Yang-Ling
論文名稱: 雞尾酒有機色素增感太陽電池之研究
Sensitization of Nanocrystalline TiO2 Solar Cell by Using Organic Dye Cocktails
指導教授: 楊毓民
Yang, Yu-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 105
中文關鍵詞: 雞尾酒有機色素共吸附聚集光電轉化效率色素增感太陽電池
外文關鍵詞: Organic dye cocktails, Dye-sensitized solar cells, Co-adsorption, IPCE, Aggregation
相關次數: 點閱:86下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •  文獻中使用以釕為中心金屬的色素,雖然可以使色素增感太陽電池的效率超越10%,但是成本太高。本文嘗試以雞尾酒有機色素-亦即混合兩種市售便宜的有機色素-增感的方式,組裝成太陽電池,並探討雞尾酒有機色素對光的吸收、在二氧化鈦光電極上的共吸附、聚集現象,及其與光電轉化效率的關聯。本文從七種有機色素中篩選出三種:TCPP、Mercurochrome及C343,先分析其UV-vis吸收圖譜,判斷其吸收的互補性。至於色素在光電極上的吸附動態及負載,則可利用吸附過程中色素溶液濃度的變化計算求得。此外,藉由分析色素增感光電極的UV-vis吸收圖譜紅移及藍移的現象,可以了解色素在吸附過程中的聚集現象。最後組裝成電池,可以測定入射光電轉化效率(IPCE)及總效率。以TCPP/Mercurochrome及C343/Mercurochrome兩種雙成分雞尾酒色素,分別以六種及三種組成混合進行測試。實驗結果顯示,不論在任何組成下,吸收範圍都很寬廣,且聚集現象因混合而減少,但電池總效率與理想混合的結果比較皆為負偏差,都不及Mercurochrome的效率(η=1.43%)。本文亦就負載量及IPCE特徵曲線探討雞尾酒色素影響電池總效率的主要因素。

     Although dye-sensitized solar cells with ruthenium dyes as sensitizers may reach an overall efficiency up to 10%, the high cost greatly limits their advances in application. In stead of ruthenium dyes, organic dye cocktails which contain two commercial cheap organic dyes — i.e. TCPP /Mercurochrome and C343/Mercurochrome — with various compositions were employed to sensitize the solar cell in this study. Adsorption properties, adsorption dynamics and dye loading, dye aggregation behavior, and photosensitization properties were investigated systematically. The experimental results indicated that dye cocktails were efficient in light harvesting. Furthermore, co-adsorption was found to suppress the aggregation of dyes. The overall efficiencies, however, show a negative deviation from the ideal mixing calculations. The main factors that affect the sensitization performance were discussed further through dye loading and IPCE(incident photon-to-electron conversion efficiency) characteristics.

               目錄 摘要........................................................................I Abstract....................................................................Ⅱ 誌謝........................................................................Ⅲ 目錄........................................................................Ⅳ 第一章 緒論...............................................................1 1.1 前言...............................................................1 1.2 太陽電池發展現況...................................................2 1.3 研究動機與目的.....................................................5 第二章 原理...............................................................6 2.1 太陽電池工作原理...................................................6 2.1.1 太陽電池總效率的計算...............................................7 2.1.2 光電轉化效率.......................................................11 2.2 透明導電氧化層.....................................................12 2.3 光電極.............................................................12 2.3.1 半導體光電極材料...................................................12 2.3.2 TiO2光電極特性.....................................................13 2.3.3 TiO2光電極製備方法.................................................15 2.4 色素...............................................................16 2.4.1 有機金屬錯合物色素.................................................16 2.4.2 純有機色素.........................................................18 2.4.3 其他增感色素.......................................................21 2.5 色素增感方法.......................................................22 2.5.1 傳統吸附方式.......................................................22 2.5.2 電化學沈積.........................................................23 2.5.3 雞尾酒有機色素.....................................................23 2.6 電解質.............................................................26 2.7 對電極.............................................................27 2.8 電池組裝...........................................................27 第三章 實驗...............................................................31 3.1 實驗藥品...........................................................31 3.2 儀器設備...........................................................34 3.2.1 X光繞射分析儀......................................................34 3.2.2 超音波震盪器.......................................................34 3.2.3 旋轉塗佈機.........................................................34 3.2.4 高溫爐.............................................................35 3.2.5 表面輪廓儀.........................................................35 3.2.6 紫外光/可見光光譜儀................................................36 3.2.7 掃描式電子顯微鏡...................................................36 3.2.8 離子濺鍍機.........................................................38 3.2.9 太陽光模擬器.......................................................38 3.2.10 定電位/定電流儀....................................................40 3.2.11 光電轉化效率測定儀.................................................40 3.2.12 Mili-Q超純水系統...................................................41 3.3 實驗方法...........................................................42 3.3.1 TiO2膠體溶液製備...................................................42 3.3.2 TiO2光電極製備.....................................................42 3.3.3 色素吸附...........................................................42 3.3.4 吸附動力學分析.....................................................44 3.3.5 對電極製備.........................................................44 3.3.6 電解液製備.........................................................45 3.3.7 電池組裝...........................................................45 3.3.8 IPCE之量測.........................................................46 3.3.9 效率之量測.........................................................46 第四章 結果與討論.........................................................48 4.1 TiO2奈米晶薄膜光電極特性分析.......................................48 4.1.1 TiO2的相態.........................................................48 4.1.2 薄膜光電極的表面型態及其對光電轉化效率的影響(乙醇系統)...........48 4.1.3 薄膜光電極的表面型態及其對光電轉化效率的影響(純水系統)...........49 4.2 有機色素分子的吸收特性分析.........................................55 4.2.1 有機色素分子挑選...................................................55 4.2.2 TCPP ..............................................................56 4.2.3 Mercurochrome......................................................58 4.2.4 Coumarin 343.......................................................61 4.2.5 雞尾酒色素.........................................................63 4.3 有機色素分子的吸附特性分析-負載測定................................67 4.3.1 TCPP...............................................................67 4.3.2 Mercurochrome......................................................67 4.3.3 Coumarin 343.......................................................71 4.3.4 雞尾酒色素.........................................................71 4.4 有機色素增感太陽電池的光電轉化效率.................................78 4.4.1 TCPP...............................................................78 4.4.2 Mercurochrome......................................................79 4.4.3 Coumarin 343.......................................................80 4.4.4 雞尾酒色素增感太陽電池.............................................81 4.5 有機色素增感太陽電池的入射光電轉化效率.............................87 4.5.1 TCPP...............................................................87 4.5.2 Mercurochrome......................................................88 4.5.3 Coumarin 343.......................................................89 4.5.4 雞尾酒色素.........................................................90 第五章 結論與建議.........................................................95 5.1 結論...............................................................95 5.2 建議...............................................................96 參考文獻....................................................................98 自述........................................................................105

    Amao, Y.; Komori, T.; Dye-Sensitized Solar Cell Using a TiO2 Nanocrystalline Film Electrode Modified by an Aluminum Phthalocyanine and Myristic Acid Coadsorption Layer; Langmuir, 19, 8872-8875, 2003.

    Cai, Q.; Paulose, M.; Varghese, O. K.; Grimes, C. A.; The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation; J. Mater. Res., 20, 230-236, 2005.

    Cherian, S. and Wamser, C. C.; Adsorption and Photoactivity of Tetra (4-carboxyphenyl) porphyrin (TCPP) on Nanoparticulate TiO2; J. Phys. Chem. B, 104, 3624-3629, 2000.

    Fang, J.; Su, L.; Wu, J.; Shen, Y.; Lu, Z.; Fabrication, characterization, and photovoltaic study of dye-co-modified TiO2 electrodes; New J. Chem 21, 1303-1307, 1997.

    Fang, X.; Ma, T.; Guan, G.; Akiyama, M.; Kida, T.; Abe E.; Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell, Journal of Electroanalytical Chemistry, 570, 257–263, 2004.

    Ferrere, S.; Gregg, B. A.; New perylenes for dye sensitization of TiO2; New J. Chem, 26, 1155–1160 , 2002.

    Grätzel, M.; Perspectives for dye-sensitized nanocrystalline solar cells; Prog. Photovolt. Res., Appl., 8, 171-185, 2000.

    Grätzel, M.; Photoelectrochemical Cells; Nature, 414, 338-344, 2001.

    Guo, M.; Diaoc, P.; Rena, Y. J.; Mengd, F.; Tiand, H.; Cai, S.M.; Photoelectrochemical studies of nanocrystalline TiO2 co-sensitized by novel cyanine dyes; Solar Energy Materials & Solar Cells, 88, 23–35, 2005.

    Hagfeldt, A.; Didriksson, B.; Palmqvist, T.; Lindström, H.; Södergren, S.; Rensmo, H.; Lindquist, S. E.; Verification of high efficiencies for the Gr ätzel-cell. A 7% efficient solar cell based on dye-sensitized colloidal TiO 2 films; Solar Energy Materials & Solar Cells, 31, 481–488, 1994.

    Hagfeldt, A. and Grätzel, M.; Molecular Photovoltaics; Acc. Chem. Res., 33, 269-277, 2000.

    Hara, K.; Horiguchi, T.; Kinoshita, T.; Sayama, K.; Sugihara, H.; Arakawa, H.; Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells; Solar Energy Materials & Solar Cells, 64,115-134, 2000.

    Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Sugihara, H.; Arakawa, H.; Molecular Design of Coumarin Dyes for Efficient Dye-Sensitized Solar Cells; J. Phys. Chem. B, 107, 597-606, 2003.

    Hara, K.; Dan-oh, Y.; Kasada, C.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H.; Effect of Additives on the Photovoltaic Performance of Coumarin-Dye-Sensitized Nanocrystalline TiO2 Solar Cells; Langmuir, 20, 4205-4210, 2004.

    Halme, J.; Dye-sensitized nanostructured and organic photovoltaic cells:technical review and preliminary tests; Master Thesis, Helsinki University of Technology, 2002.

    He, J.; Benkö, G.; Korodi, F.; Polyvka, T.; Lomoth, R.; Åkermark, B.; Sun, L.; Hagfeldt, A.; Sundström, V.; Modified Phthalocyanines for Efficient Near-IR Sensitization of Nanostructured TiO2 Electrode; J. Am. Chem. Soc., 124, 4922-4932, 2002.

    He, J. A.; Mosurkal, R.; Samuelson, L. A.; Li, L.; Kumar, J.; Dye-sensitized Solar Cell Fabricated by Electrostatic Layer-by-Layer Assembly of Amphoteric TiO2 Nanoparticles; Langmuir, 19, 2169-2174, 2003.

    Horiuchi, T.; Miura, H,; Sumioka, K.; Uchida, S.; High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes; J. AM. CHEM. SOC., 126, 12218-12219, 2004.

    Jasieniak, J.; Johnston, M.; Waclawik, E. R.; Characterization of a Porphyrin-Containing Dye-Sensitized Solar Cell; J. Phys. Chem. B, 108, 12962-12971, 2004.

    Kalyanasundaram, K. and Grätzel, M.; Applications of functionalized transition metal complexes in photonic and optoelectronic devices, Coordination Chemistry Reviews, 177, 347-414, 1998.

    Kim, B. H. ; Ahn, J. H.; Jeong, J. H.; Jeon, Y. S.; Jeon, K. O.; Hwan K.S.; Preparation of TiO2 thin film on SiO2 glass by a spin coating-pyrolysis process; Ceramics International, 32, 223–225, 2006.

    Kohle, O.; Gratzel, M.; Meyer, A. F.; Meyer, T. B.; The Photovoltaic Stability of Bis (isothiocyanato) ruthenium (II)-bis-2,2´- bipyridine -4,4´-dicarboxylic Acid and Related Sensitizers, Adv. Mater., 9, 11, 904-6, 1997.

    Konarka Technology Inc., 2003. http://es.epa.gov/ncer/publications/nano/ppt/EPA-Gaudiani.ppt

    Krüger, J.; Plass, R.; Cevey, L.; Piccirelli, M.; Grätzel, M.; High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination, Appl. Phys. Lett., 79, 13, 2085-2087, 2001.

    Ma, T.; Fang, X.; Akiyama, M.; Inoue K.; Noma, H.; Abe, E.; Properties of several types of novel counter electrodes for dye-sensitized solar cells; Journal of Electroanalytical Chemistry and Photobiology A: Chemistry, 574, 77–83, 2004.

    Meredith, P.; Powell, B. J.; Riesz, J.; Vogel, R.; Blake, D.; Kartini, I.; Will, G.; Subianto, S.; “Broad Band Photon Harvesting Biomolecules for Photovoltaics.” zzz.arxiv.cornell.edu/abs/cond-mat-0406097
    Matthey, J., PLC, 2004.

    http://www.dti.gov.uk/energy/renewables/publications/pdfs/sp200358.pdf
    Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Gräetzel, M.; Conversion of Light to Electricity by cis-XzBis (2,2’ – bipyridyl - 4,4’ - dicarboxylate) ruthenium (11) Charge-Transfer Sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on Nanocrystalline Ti02 Electrodes; J. Am. Chem. Soc., 115, 6382-6390, 1993.

    Nazeeruddin, M. K.; Humphry-Baker, R.; Liska, P.; and Grätzel, M.; Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell; J. Phys. Chem. B, 107, 8981-8987, 2003.

    Nogueira, A.; Furtado, L.; Formiga, A.; Nakamura, M.; Araki, K.; Toma, H.; Sensitization of TiO2 by Supramolecules Containing Zinc Porphyrins and Ruthenium-Polypyridyl Complexes, Inorganic Chemistry, 43, No. 2,396-398, 2004.

    O'Regan, B.; Grätzel, M.; A low cost high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353, 737-740, 1991.

    Papageorgiou, N.; Barbe, C.; Gra1tzel, M.; Morphology and Adsorbate Dependence of Ionic Transport in Dye Sensitized Mesoporous TiO2 Films; J. Phys. Chem. B, 102, 4156-4164, 1998.

    Perera, V.P.S.; Pitigala, P.K.D.D.P.; Senevirathne, M.K.I.; Tennakone K.; A solar cell sensitized withth ree different dyes; Solar Energy Materials & Solar Cells, 85, 91–98, 2005.

    Plass, R.; Pelet, S.; Krueger, J.; Grätzel, M.; J. Phys. Chem. B 106, 7578-7580, 2002.

    Smestad, G.; Bignozzi, C.; Argazzi, R.; Testing of dye sensitized TiO 2 solar cells I: Experimental photocurrent output and conversion efficiencies; Solar Energy Materials & Solar Cells, 32, 259-272, 1994.

    Sommeling, P. M.; Spath, M.; Kroon, J.; Kinderman, R.; Roosmalen, J. V.; 16th European photovoltaic Solar Energy Conference and Exhibition, Glasgow, Scotland, 2002.

    Sun, B.; Vorontsov, A. V.; Smirniotis, P. G.; Role of Platinum Deposited on TiO2 in Phenol Photocatalytic Oxidation, Langmuir, 19, 3151-3156, 2003.

    Takenaka, S.; Maehara, Y.; Imai, H.; Yoshikawa, M.; Shiratori, S.; Layer-by-layer self-assembly replication technique: Application to photoelectrode of dye-sensitized solar cell; Thin Solid Films, 438-439, 346-351, 2003.

    Vogel, R.; Hoyer, P.; Weller, H.; Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors; J. Phys. Chem., 98, 3183-3188, 1994.

    Wang, C.C. and Ying, J. Y.; Sol-Gel Synthesis and Hydrothermal Processing of Anatase and Rutile Titania Nanocrystals; Chemistry of Materials, 11, 3113-3120, 1999.

    Wang, P.; Zakeeruddin, S. M.; Comte, P.; Charvet, R.; Humphry-Baker, R.; Gra1tzel M.; Enhance the Performance of Dye-Sensitized Solar Cells by Co-grafting Amphiphilic Sensitizer and Hexadecylmalonic Acid on TiO2 Nanocrystals; J. Phys. Chem. B, 107, 14336-14341, 2003.

    Wang, P.; Zakeeruddin, S. M.; Moser J. E.; Humphry-Baker, R.; Comte, P.; Aranyos, V.; Hagfeldt, A.; Zakeeruddin, M. K.; Gra1tzel M.; Stable New Sensitizer with Improved Light Harvesting for Nanocrystalline Dye-Sensitized Solar Cells; Adv. Mater., 16, 20, 1806-1810, 2004.

    Wolfbauer, G.; Bond, A. M.; Eklund, J. C.; MacFarlane, D. R.; A channel flow cell system specially designed to test the efficiency of redox shuttles in dye sensitized solar cells; Solar Energy Materials & Solar Cells, 70, 85-101, 2001.

    Yoshida, T.; Iwaya, M.; Ando, H.; Oekermann, T.; Nonomura, K.; Schlettwein, D.; Wöhrlec, D.; Minoura, H.; Improved photoelectron -chemical performance of electrodeposited ZnO/EosinY hybrid thin films by dye re-adsorption; Chem. Commun., 400-401, 2004.

    日本特許廳, 色素增感型太陽電池,2004.
    http://www.jpo.go.jp/shiryou/s_sonota/hyoujun_gijutsu/solar_cell/01_mokuji.htmKim

    下載圖示 校內:2007-07-19公開
    校外:2007-07-19公開
    QR CODE