| 研究生: |
溫國威 Wen, Kuo-Wei |
|---|---|
| 論文名稱: |
超高性能纖維混凝土梁構件之剪力行為研究 Shear behavior of ultra-high performance fiber reinforced concrete beams without stirrup |
| 指導教授: |
洪崇展
Hung, Chung-Chan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 212 |
| 中文關鍵詞: | 剪力行為 、鋼筋混凝土梁 、超高性能纖維混凝土 、剪力預測公式 、粒料互鎖 、剪力跨深比 、鋼纖維 |
| 外文關鍵詞: | shear behavior, Ultra-High Performance Fiber Reinforce Concrete (UHPFRC), shear strength shear strength approach |
| 相關次數: | 點閱:158 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋼筋混凝土在過去已有相當程度的發展,大多專注於一般傳統混凝土的研究,隨著時代演進,高強度與超高強度混凝土配比設計逐漸成熟,其混凝土抗壓強度為一般混凝土的數倍,但也伴隨著其構件行為更難以掌握。而在高強度與超高強度混凝土中加入鋼纖維,有效增強混凝土抗拉強度及改善整體拉力行為。本研究探討超高性能纖維混凝土(UHPFRC)與超高性能混凝土(UHPC)梁試體,在四點載重下剪力行為及承載極限強度,設計了18支梁試體進行試驗,其中參數有纖維體積含量(V_f=0%、0.75%、1.5%)、有無粗粒料、剪力跨深比(a⁄d=1.5、2.4、3.3)。實驗結果顯示,加入0.75%與1.5%纖維體積比能有效提升剪力強度。本文章建議理論預測公式能有效預測不同剪力跨深比與不同纖維含量之超高性能纖維混凝土梁構件之剪力強度,並建立粗粒料的有效互鎖深度預評估公式。
Ultra-high performance fiber reinforced concrete (UHPFRC) has superior strength and ductility, which together turn into enhanced shear strength and crack-width control ability. This study discusses the shear resistance of ultra-high performance fiber reinforced concrete beams with different shear span-depth ratios. Four-point load tests are performed to investigate the shear behaviors of UHPFRC. The experimental results show that fibers have a significant contribution to the shear strength of the beams. In addition, the ultimate shear strength of the beam is closely related to the fiber content and the shear span-depth ratio. Multiple performance measures are employed to assess the behavior of the UHPFRC beams. In this study, it proposed an analytical approach and verified by experimental results. The verify results indicate that the approach has high reliability to predict the ultimate shear strength for UHPFRC beam.
[1] 吳奕翰. (2016). 超高性能纖維混凝土結構構件之剪力行為與設計探討. 成功大學土木工程學系學位論文, 1-160.
[2] 洪崇展, 戴艾珍, 顏誠皜, 溫國威, & 張庭維. (2017). 新世代多功能性混凝土材料-高性能纖維混凝土. 土木水利, 44(1), 33-51.
[3] Ashour, S. A., Hasanain, G. S., & Wafa, F. F. (1992). Shear behavior of high-strength fiber reinforced concrete beams. Structural Journal, 89(2), 176-184.
[4] ACI (American Concrete Institute). (2014). Building code requirements for reinforced concrete. ACI 318-14.
[5] Bentz, E. C., Vecchio, F. J., & Collins, M. P. (2006). Simplified modified compression field theory for calculating shear strength of reinforced concrete elements. ACI Structural Journal, 103(4), 614.
[6] Canadian Standards Association. (2004). Design of concrete structures. Mississauga, Ont.: Canadian Standards Association.
[7] Choi, K. K., Hong-Gun, P., & Wight, J. K. (2007). Unified shear strength model for reinforced concrete beams-Part I: Development. ACI Structural Journal, 104(2), 142.
[8] Calvi, P. M., Bentz, E. C., & Collins, M. P. (2017). Pure Mechanics Crack Model for Shear Stress Transfer in Cracked Reinforced Concrete. ACI Structural Journal, 114(2), 545.
[9] Dei Poli, S., Di Prisco, M., & Gambarova, P. G. (1992). Shear response, deformations, and subgrade stiffness of a dowel bar embedded in concrete. structural Journal, 89(6), 665-675.
[10] Fenwick, R. C., & Pauley, T. (1968). Mechanism of shear resistance of concrete beams. Journal of the Structural Division, 94(10), 2325-2350.
[11] Henager C. H. and Doherty T. J. (1976). Analysis of Reinforced Fibrous Concrete Beams. Proceeding, ASCE. 102(1): 177-188.
[12] Hsu, T. T. (1988). Softened truss model theory for shear and torsion. Structural Journal, 85(6), 624-635.
[13] Hung, C. C., & El-Tawil, S. (2010). Hybrid Rotating/Fixed-Crack Model for High-Performance Fiber-Reinforced Cementitious Composites. ACI Materials Journal,
[14] Hung, C. C., & El-Tawil, S. (2011). Seismic behavior of a coupled wall system with HPFRC materials in critical regions. Journal of Structural Engineering, 137(12), 1499-1507.
[15] Hung, C. C., Su, Y. F., & Yu, K. H. (2013). Modeling the shear hysteretic response for high performance fiber reinforced cementitious composites. Construction and Building Materials, 41, 37-48.
[16] Hung, C. C., & Su, Y. F. (2013). On modeling coupling beams incorporating strain-hardening cement-based composites. Computers and Concrete, 12(4), 565-583.
[17] Hung, C. C., & Li, S. H. (2013). Three-dimensional model for analysis of high performance fiber reinforced cement-based composites. Composites Part B: Engineering, 45(1), 1441-1447.
[18] Hung, C. C., & Yen, W. M. (2014). Experimental evaluation of ductile fiber reinforced cement-based composite beams incorporating shape memory alloy bars. Procedia Engineering, 79, 506-512.
[19] Hung, C. C., Yen, W. M., & Yu, K. H. (2016). Vulnerability and improvement of reinforced ECC flexural members under displacement reversals: experimental investigation and computational analysis. Construction and Building Materials, 107, 287-298.
[20] Hung, C. C., & Chen, Y. S. (2016). Innovative ECC jacketing for retrofitting shear-deficient RC members. Construction and building materials, 111, 408-418.
[21] Hung, C. C., & Chueh, C. Y. (2016). Cyclic behavior of UHPFRC flexural members reinforced with high-strength steel rebar. Engineering Structures, 122, 108-120.107(6).
[22] Hung, C. C., & Su, Y. F. (2016). Medium-term self-healing evaluation of Engineered Cementitious Composites with varying amounts of fly ash and exposure durations. Construction and Building Materials, 118, 194-203.
[23] Hung, C. C., & Yau, W. G. (2017). Vulnerability evaluation of scoured bridges under floods. Engineering Structures, 132, 288-299.
[24] Hung, C. C., Li, H., & Chen, H. C. (2017). High-strength steel reinforced squat UHPFRC shear walls: Cyclic behavior and design implications. Engineering Structures, 141, 59-74.
[25] Hung, C. C., Li, H., & Chen, H. C. (2017). High-strength steel reinforced squat UHPFRC shear walls: cyclic behavior and design implications. Engineering Structures, 141, 59-74.
[26] Hung, C. C., Su, Y. F., & Hung, H. H. (2017). Impact of natural weathering on medium-term self-healing performance of fiber reinforced cementitious composites with intrinsic crack-width control capability. Cement and Concrete Composites, 80, 200-209.
[27] Hung, C. C., & Hu, F. Y. (2018). Behavior of high-strength concrete slender columns strengthened with steel fibers under concentric axial loading. Construction and Building Materials, 175, 422-433.
[28] Hung, C. C., Hu, F. Y., & Yen, C. H. (2018). Behavior of slender UHPC columns under eccentric loading. Engineering Structures, 174, 701-711.
[29] Hung, C. C., Su, Y. F., & Su, Y. M. (2018). Mechanical properties and self-healing evaluation of strain-hardening cementitious composites with high volumes of hybrid pozzolan materials. Composites Part B: Engineering, 133, 15-25.
[30] Kani, G. (1967, March). How safe are our large reinforced concrete beams?. In Journal Proceedings (Vol. 64, No. 3, pp. 128-141).
[31] Kwak, Y. K., Eberhard, M. O., Kim, W. S., & Kim, J. (2002). Shear strength of steel fiber-reinforced concrete beams without stirrups. ACI Structural Journal, 99(4), 530-538.
[32] Mau, S. T., & Hsu, T. T. (1987). Shear strength prediction for deep beams with web reinforcement. Structural Journal, 84(6), 513-523.
[33] Muttoni, A., & Fernández Ruiz, M. (2008). Shear strength of members without transverse reinforcement as function of critical shear crack width. ACI Structural Journal, 2(ARTICLE).
[34] Narayanan, R., & Darwish, I. Y. S. (1987). Use of steel fibers as shear reinforcement. Structural Journal, 84(3), 216-227.
[35] Priestley, M. N., Verma, R., & Xiao, Y. (1994). Seismic shear strength of reinforced concrete columns. Journal of structural engineering, 120(8), 2310-2329.
[36] Pang, X. B. D., & Hsu, T. T. (1996). Fixed angle softened truss model for reinforced concrete. Structural Journal, 93(2), 196-208.
[37] Qi, J., Ma, Z. J., & Wang, J. (2016). Shear strength of UHPFRC beams: Mesoscale fiber-matrix discrete model. Journal of Structural Engineering, 143(4), 04016209.
[38] Sharma, A. K. (1986, July). Shear strength of steel fiber reinforced concrete beams. In Journal Proceedings (Vol. 83, No. 4, pp. 624-628).
[39] Vecchio, F. J., & Collins, M. P. (1986). The modified compression-field theory for reinforced concrete elements subjected to shear. ACI J., 83(2), 219-231.
[40] Wille, K., & Naaman, A. E. (2012). Pullout Behavior of High-Strength Steel Fibers Embedded in Ultra-High-Performance Concrete. ACI Materials Journal, 109(4).
校內:立即公開