簡易檢索 / 詳目顯示

研究生: 黃俊豪
Huang, Jyun-Hao
論文名稱: 以COMSOL分析柴氏長晶法之熱質傳與液固界面形狀
COMSOL Analysis on Heat and Mass Transfer and Crystal/Melt Interface Shape in Czochralski Crystal Growth
指導教授: 趙隆山
Chao, Long-Sun
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 79
中文關鍵詞: 柴氏長晶法COMSOL Multiphysics液固界面氧濃度
外文關鍵詞: Czochralski method, COMSOL Multiphysics, crystal/melt interface, concentration
相關次數: 點閱:99下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 柴氏長晶法是最常用於生長大尺寸單晶矽的方法,而生長單晶矽的過程中,由於爐體內的溫度相當高無法直接觀察到矽熔湯內的熱流場情形,因此使用數值模擬方法來掌控爐體內的情況,以減少實驗所耗費的成本和時間。
    本研究使用以有限元素法基礎的COMSOL Multiphysics軟體對柴氏長晶法爐體內的熱流場做模擬分析,以獲得爐體內的熱流場情形與相關資料。主要模擬矽晶棒在各階段生長過程中熱流場和濃度的分佈情形,從尚未長晶至不同長晶過程中觀察矽熔湯內的熱流場及液固界面形狀變化。包括坩堝及晶軸旋轉對矽熔湯的影響、裝設輻射隔絕器對爐體內的熱流場及濃度場的影響。
    模擬結果發現矽晶棒生長過程中,矽熔湯內的流場主要受到自然對流影響導致溫度分佈不均,藉由坩堝及晶軸旋轉能抑制自然對流,改善矽熔湯內的熱流場,而液固界面形狀會受到拉速的影響導致有不同的形狀產生,也會影響到晶棒內部缺陷形態,裝設輻射隔絕器能有效的引導氬氣流動會對濃度場造成影響和降低加熱器的使用功率。透過本研究的模擬結果提供生長單晶矽的參考依據。

    Czochralski method is the most commonly used to grow large single crystals of silicon. In the growth process of silicon single crystal, due to the furnace body of very high temperature, the thermal flow within the melt pool cannot be observed directly. Consequently, the numerical simulation is employed to control the situation in the furnace, which could help to reduce the cost and time of crystal-growth experiments.
    The study is to use COMSOL Multiphysics software to simulate the thermal flow in the furnace of Czochralski method during the crystal growth. It is expected to obtain the temperature and velocity fields and the relevant data in the furnace. It is mainly based on the different growth stages of the silicon ingot to simulate the temperature, velocity and concentration fields and the shape variation of the crystal/melt interface. In the simulation, the crucible and crystal rotations and the radiation shield are considered to analyse their effects on the heat flow and concentration fields and the interface shape.
    From the simulation results of the silicon crystal growth, the natural convection, caused by the coupled effect of temperature and flow fields, could make the temperature distribution of the melt pool uneven. By using the rotation of the crucible and the crystal, the natural convection could be suppressed and the thermal flow field would be modified. Consequently, the impact of pulling rate could not make the crystal/melt interface produce different shapes and affect the internal defects. The installation of the radiation shield could effectively guide the gas flow and reduce the input heater power.

    摘要I 致謝XII 目錄XIII 表目錄XVI 圖目錄XVII 符號說明XX 第一章 緒論 1 1-1 前言 1 1-2文獻回顧 2 1-3 柴氏長晶法簡介與矽單晶中缺陷生成概論 4 1-3-1柴氏長晶法簡介 4 1-3-2矽單晶中缺陷生成概論 5 1-4 研究動機與目的 7 第二章 物理模型與系統描述 11 2-1 物理模型 11 2-1-1基本假設 12 2-1-2 統御方程式 12 2-1-3邊界條件 14 2-2 光環區(Meniscus) 17 2-3 潛熱釋放之凝固熱傳問題 18 2-3-1單區法晶體固化理論 19 2-3-2雙區法修正液固界面 20 2-4 判別流場型態 21 2-5標準k-ε紊流模式 24 第三章 數值分析與研究方法 31 3-1 COMSOL Multiphysics軟體 31 3-2數值方法 32 3-2-1有限元素法 32 3-2-2加勒金法(Galerkin’s method) 33 3-2-3元素與內插函數 34 3-3 研究步驟 34 3-4 模擬項目 35 第四章 結果與討論 40 4-1模擬與驗證 40 4-2長晶爐內部的溫度分佈與流場流動情形 41 4-3矽熔湯熱流場分析 41 4-3-1有無表面張力對熱流場的影響 45 4-3-2坩堝與晶軸旋轉對熱流場的影響 46 4-4液固界面形狀的變化 47 4-4-1模擬結果與文獻的液固界面形狀比較 47 4-4-2不同長晶階段液固界面形狀的變化 48 4-5探討I型與V型點缺陷發生位置 49 4-6有無輻射隔絕器的影響與爐體內部氧濃度傳遞情形 49 4-6-1有無輻射隔絕器對熱流場的影響 49 4-6-2爐體內部氧濃度傳遞情形 50 第五章 結論 75 參考文獻 77

    [1] 林明獻, "太陽電池技術入門," 全華圖書,臺北, 中華民國九十七年.
    [2] J. Z. Czochralski, phys.Chem., p. 219, 92(1989).
    [3] G. K. Teal and J. B. Little, "Growth of Germanium Single Crystals Containing p-n Junctions," Phys. Rev., 647(1950).
    [4] W.C.Dash, J. of Applied physics, 459(1959).
    [5] V. V. Voronkov and J., Crystal Growth, p. 625, 59(1982).
    [6] D. T. J. HURLE, "Analytical represention of the shape of the meniscus in Czochralski growth" Crystal Growth Technology, 13-17(1983).
    [7] J. J. Derby and R. A. Brown, "Thermal-capillary analysis of Czochralski and liquid encapsulated crystal growth I. Simulation," Journal of Crystal Growth, 605-624(1986)
    [8] J. J. Derby and R. A. Brown, "Thermal-capillary analysis of Czochralski and liquid encapsulated crystal growth II. Simulation," Journal of Crystal Growth, 227-240(1986)
    [9] F. Dupret and Y. Ryckmans, "Numerical calculation of the global heat transfer in a Czochralski furnace," Journal of Crystal Growth, 84-91(1986).
    [10] Y. Ryckmans, P. Nicodeme, and F. Dupret, "Numerical Simulation of crystal growth : Infuluence of melt convection on global heat transfer and interface shape," Journal of Crystal Growth, 702-706(1990).
    [11] K.-W. Yi, H.-T. Chung, H.-W. Lee, and J.-K. Yoon, "The effects of pulling rates on the shape of crystal/melt interface in Si single crystal growth by the Czochralski method," Journal of Crystal Growth, 451-460(1993).
    [12] N. V. d. Bogaert and F.Dupret, "Dynamic global simulation of the Czochralski process I. Principles of the method," Crystal Growth Technology, 65-76(1997).
    [13] N. V. den and F.Dupret, "Dynamic global simulation of the Czochralski process II. Analysis of the growth of germanium crystal," Crystal Growth Technology, 77-93(1997).
    [14] A. Lipchin and R. A. Brown, "Hybrid finite-volume/finite-element simulation of heat transfer and melt turbulence in Czochralski crystal growth of silicon," Journal of Crystal Growth, 192-203(2000).
    [15] K. Takano and e. al, "Global simulation of the CZ silicon crystal growth upto 400 mm in diameter," Crystal Growth Technology, 26-30(2001)
    [16] M. Li, Y. Li, N. Imaishi, and T. Tsukada, "Global simulation of a silicon Czochralski furnace," Journal of Crystal Growth, vol. 234, pp. 32-46, 1// 2002.
    [17] 黃禮翼, "高效率太陽能矽單晶提拉之熱場設計與分析," 國立臺灣大學,臺北, 中華民國九十三年.
    [18] C. J. Jing, "Global analysis of heat transfer in CZ crystal growth of oxide taking into account three-dimensional unsteady melt convection:Effect of meniscus shape," Crystal Growth Technology, 204-213(2008).
    [19] A. D. Smirnov and V. V. Kalaev, "Development of oxygen transport model in Czochralski growth of silicon crystals," Journal of Crystal Growth, vol. 310, pp. 2970-2976, 6/1/ 2008.
    [20] C. Jianweia, "Simulation aided hot zone design for faster growth of CZ silicon mono crystals," RARE METALS, vol. 30, p. 155, 3-14(2003).
    [21] O. A. Noghabi, "Analysis of W-shape melt/crysta linterface formation in Czochralski silicon crystal growth," Crystal Growth Technology, 77-82(2013).
    [22] 林明獻, "矽晶圓半導體材料技術," 全華圖書,臺北, 中華民國九十六年.
    [23] R. A. Brown, D. Maroudas, and T. Sinno, "Modelling point defect dynamics in the crystal growth of silicon," Journal of Crystal Growth, vol. 137, pp. 12-25, 3/2/ 1994.
    [24] T. Sinno, R. A. Brown, W. von Ammon, and E. Dornberger, "Point Defect Dynamics and the Oxidation‐Induced Stacking‐Fault Ring in Czochralski‐Grown Silicon Crystals," Journal of The Electrochemical Society, vol. 145, pp. 302-318, January 1, 1998 1998.
    [25] T. Sinno and R. A. Brown, "Modeling Microdefect Formation in Czochralski Silicon," Journal of The Electrochemical Society, vol. 146, pp. 2300-2312, June 1, 1999 1999.
    [26] E. Dornberger, J. Virbulis, B. Hanna, R. Hoelzl, E. Daub, and W. von Ammon, "Silicon crystals for future requirements of 300 mm wafers," Journal of Crystal Growth, vol. 229, pp. 11-16, 7// 2001.
    [27] 王書邵, "柴氏長晶法之熱流場與液固界面形狀之數值分析," 碩士, 工程科學系, 國立成功大學, 台南市, 2014.
    [28] A. Sabanskis, K. Bergfelds, A. Muiznieks, T. Schröck, and A. Krauze, "Crystal shape 2D modeling for transient CZ silicon crystal growth," Journal of Crystal Growth, vol. 377, pp. 9-16, 8/15/ 2013.
    [29] R. W. Lewis and K. Ravindran, "Finite element simulation of metal casting," International Journal for Numerical Methods in Engineering, vol. 47, pp. 29-59, 2000.
    [30] J. A. Dantzig, "Modelling liquid-solid phase changes with melt convection," International Journal for Numerical Methods in Engineering, vol. 28, pp. 1769-1785, 1989.
    [31] 陳柏瑋, "數值模擬晶棒成長之熱流分析," 國立交通大學,新竹, 中華民國九十九年.
    [32] L. B.E. and S. D.B., "The Numerical Computation of Turbulent Flow," Computer Method in Applied Mechanics and Engineering vol. 3, pp. 269-289, 1974.
    [33] M. Kirpo, "Global simulation of the Czochralski silicon crystal growth in ANSYS FLUENT," Journal of Crystal Growth, vol. 371, pp. 60-69, 2013.
    [34] J.-C. Chen, Y.-Y. Teng, W.-T. Wun, C.-W. Lu, H.-I. Chen, C.-Y. Chen, et al., "Numerical simulation of oxygen transport during the CZ silicon crystal growth process," Journal of Crystal Growth, vol. 318, pp. 318-323, 3/1/ 2011.
    [35] 陳彥志, "數值模擬柴氏長晶法之熱流場與氧濃度分佈," 碩士, 機械工程學系, 國立交通大學, 新竹市, 2012.
    [36] V. V. Kalaev, "Combined effect of DC magnetic fields and free surface stresses on the melt flow and crystallization front formation during 400 mm diameter Si Cz crystal growth," Journal of Crystal Growth, vol. 303, pp. 203-210, 5/1/ 2007.
    [37] O. A. Noghabi, M. Jomâa, and M. M'Hamdi, "Analysis of W-shape melt/crystal interface formation in Czochralski silicon crystal growth," Journal of Crystal Growth, vol. 362, pp. 77-82, 2013.

    下載圖示 校內:2020-08-12公開
    校外:2020-08-12公開
    QR CODE