簡易檢索 / 詳目顯示

研究生: 葉馥榕
Yeh, Fu-Jung
論文名稱: 鈦/鎳/銀/金 金屬化鍍層於熱循環測試後界面反應之研究
Investigations on the Interfacial Interaction of Ti/Ni/Ag/Au Multilayers Metallization under Thermal Cycling Test
指導教授: 林光隆
Lin, Kwang-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 88
中文關鍵詞: 金屬化鍍層熱循環測試界面孔洞生成
外文關鍵詞: Ti/Ni/Ag/Au Metallization Layer, Thermal Cycling, Interfacial Reactions
相關次數: 點閱:89下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 發光二極體(LED)因其節能、省電、壽命長優點被視為未來可取代日常生活照明的元件,為達此目的,發光源之亮度成為一個急需突破的關鍵技術。LED之亮度提高伴隨而來的問題為元件散熱,熱量的累積除了造成元件溫度上升外,更會影響其發光效率。因此,本研究以使用高熱傳導係數且成本較低的Si基板取代現行的氧化鋁基板之前提,探討金屬化鍍層在Si基板上經熱循環測試後之界面反應。
    本研究選用Ti/Ni/Ag/Au薄膜作為Si基板LED之金屬化鍍層,以熱循環方法模擬LED元件運作溫度,探討熱循環測試後界面反應和界面電性之變化,並進一步了解通過Ni/(Ag/Au)層界面電流值較低之原因。實驗利用真空濺鍍方式將欲濺鍍多層金屬層依序濺鍍在Si基材上,再進行332~2558次熱循環測試,熱循環條件是於-40℃持溫 15 分鐘,接著再將升溫到125℃持溫15 分鐘升降溫速率皆固定為11℃/min。熱循環測試後的試片在研磨拋光後先使用SEM觀察其表面形貌,並用多探針奈米電性量測系統量測層與層之間的電性。
    Ti/Ni/(Ag/Au)與Ni/(Ag/Au)等多層膜之電性量測結果顯示,通過Ni/(Au/Ag)間之電流與Ti/Ni/(Ag/Au)、Ti/Ni層相比相對微小許多。由ESCA成分縱深分析可發現Au與Ag間有明顯擴散現象,且經熱循環測試後表面的Ag濃度達到68%。藉FIB蝕刻輔助分析,可發現由於向Ni、Au層擴散之Ag原子流量大於向Ag層內擴散Ni、Au原子,因而在Ag層內有孔洞生成,孔洞形貌依Ni/Ag、Ag/Au間擴散係數差異影響程度不同可大致分為四類:(a)位於Au/Ag界面交界處之孔洞(b)於Ag層內接近Ni層,尺寸微小的孔洞(c)於Ag層中數個小孔洞聚集(d)於Ag層中尺寸較大,約有90nm~150nm左右之拱型孔洞。孔洞的生成亦使得通過Ni/Ag界面及Ag/Au界面電流變得極微小,成為Ni/Au/Ag層影響整體金屬化鍍層電性表現不佳之原因。

    Light-emitting diodes (LEDs) are becoming a promising device for lighting. However, heat dissipation becomes a technological challenge which may reduce luminance as well as product life of the device. In order to solve this difficult problem, Si substrate was among the alternatives to replace traditional sapphire substrate. Si substrate offers many advantages such as good thermal conductivity, large wafer size and lower cost of the Si fabrication process. The Ti/Ni/Ag/Au multilayers combination, intended for LED metallization was deposited on Si substrate for interfacial interaction study. The interfacial interactions and electrical characteristics of the Ti/Ni/Ag/Au multilayers was investigated under various periods of thermal cycling between -40℃ and 125℃. The electrical properties of the multilayer thin films were measured by two-probe nano-electronics measurement. The depth profile was performed by ESCA (Electron Spectroscopy for Chemical Analysis). The interfacial reaction behavior was investigated with FIB (Focused Ion beam) and SEM.
    The electrical property of Ti/Ni/(Ag/Au) and Ni/(Ag/Au) multilayer show that the Ni/(Ag/Au) predominates the overall electrical performance of the multilayer combination. It is obvious that the resistance of Ni/(Ag/Au) interface is much higher than Ti/Ni interface.
    The results of ESCA (Electron Spectroscopy for Chemical Analysis) depth profile analysis indicate that Ag atoms diffuse passing through the pure Au layer to the surface after thermal cycling. The atomic concentration of Ag at the surface increases up to 68% after thermal cycling of 627 cycles. The outward diffusion of Ag atoms towards Au and Ni cause voids formation in Ag layer and thus higher electrical resistance.

    Four types of void morphology were observed (a) void formed between Au and Ag layer, (b) a small void formed in the Ag layer closing to the Ni layer. (c) several small size voids aggregating at the Ag layer. (d) larger arcuate void forming in Ag layer. The disparity of diffusion coefficient among Au, Ag and Ni elements give rise to large voids formation in the Ag layer. The formation of void is responsible for the poor electrical performance of the Ni/(Ag/Au).

    摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 第壹章 簡介 1 1-1 發光二極體演進 1 1-2 發光二極體結構 3 1-3 發光二極體基板 7 1-4 發光二極體之金屬化鍍層 11 1-4-1 矽基板之黏著層(Adhesion Layer) 11 1-4-2 擴散阻礙層之材料(Diffusion Barrier Layer) 14 1-4-3 表面抗氧化層(Oxidation Barrier Layer) 14 1-4-4 金屬化鍍層 16 1-5 研究目的 18 第貳章 實驗方法與步驟 19 2-1 實驗構想與設計 19 2-2 鈦/鎳/銀/金 金屬化鍍層試片製作 19 2-3 熱循環實驗條件 25 2-4 奈米電性量測系統試片製備 27 2-5 ESCA縱深分析 33 2-6 以FIB蝕刻後觀察孔洞形貌之試片製備 33 2-7 TEM試片製備 37 第參章 結果與討論 38 3-1 鈦/鎳/銀/金 金屬化鍍層熱循環前之形貌 38 3-2 鈦/鎳/銀/金 金屬化鍍層之界面電性 42 3-3 鈦/鎳/銀/金 金屬化鍍層之縱深成份 47 3-3-1 金/銀界面之擴散行為 47 3-3-2 銀/鎳與鎳/鈦界面之擴散行為 52 3-3-3 鈦與矽基板界面擴散行為 55 3-3-4 氧元素擴散行為 59 3-4鈦/鎳/銀/金 金屬化鍍層熱循環後之形貌 60 3-4-1 鈦/鎳/銀/金 金屬化鍍層橫截面形貌 60 3-4-2 鈦/鎳/銀/金 金屬化鍍層由表層依序向內蝕刻形貌 64 3-4-3 銀層內孔洞生成機制 69 第肆章 結論 77 參考文獻 78

    1. D. Neamen, Semiconductor Physics And Devices, McGraw-Hill, New York, 2003, Chapter8, pp. 268~270.
    2. M. G. Crafor, “Overview of Device Issues in High-Brightness Light Emitting Diodes”, Semiconductors and Semimetals, Academic Press, vol. 48, 1997, pp. 47~63.
    3. N. Holonyak and S. F. Bevaqua, “Coherent(Visible) Light Emission from Ga(As1−xPx) Junction”, Applied Physics Letters, vol. 1, 1962, pp. 82~83.
    4. S. Nakamura, T. Mukai, and M. Senoh, “Large‐Band‐Gap SiC, III‐V Nitride and II‐VI ZnSe‐Based Semiconductor Device Technologies”, Journal of Applied Physics, vol. 76, 1994, pp. 1363~1398.
    5. S. Nakamura and M. Senoh, “Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes”, Japanese Journal of Applied Physics, vol. 34, 1995, pp. L1332-L1335.
    6. S. Nakamura, T. Mukai, and M. Senoh, “Candela-Class High-Brightness InGaN/AlGaN Double-Hetero Structure Blue-Light-Emitting Diodes”, Applied Physics Letters, vol. 64, 1994, pp. 1687~1689.
    7. S. Nakamura, M. Senoh, Shin-ichi Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes”, Japanese Journal of Applied Physics, vol. 35, 1996, pp. L74~L76.
    8. T. Mukai, D. Morita, and S. Nakamura, “High-power UV InGaN/AlGaN Double-Heterostructure LEDs”, Journal of Crystal Growth, vol. 189~190, 1998, pp. 778~781.
    9. S. Nakamura, M. Senoh, N. Iwasa, and Shin‐ichi Nagahama “High-Power InGaN Single-Quantum-Well-Structure Blue and Violet Light-Emitting Diodes”, Applied Physics Letters, vol. 67, 1995, pp. 1868~1870.
    10. F. M. Steranka, J. Bhat, D. Collins, L. Cook, M. G. Craford, R. Fletcher, N. Gardner, P. Grillot, W. Goetz, M. Keuper, R. Khare, A. Kim, M. Krames, G. Harbers, M. Ludowise, P. Martin, M. Misra, G. Mueller, R. Mueller, S. Rudaz, Y. C. Shen, D. Steigerwald, S. Stockman, S. Subramanya, T. Trottier, and J. J. Wierer, “High Power LEDs–Technology Status and Market Applications”, Physica Status Solidi (a) Applied Research, vol. 194, 2002, pp. 380~388.
    11. R. V. Steele, “High-Brightness LED Market Overview”, Proceedings of SPIE, vol. 4445, 2001, pp. 1~4.
    12. A. Christensen and S. Graham, “Thermal Effects in Packaging High Power Light Emitting Diode Arrays”, Applied Thermal Engineering, vol. 29, 2009, pp. 364~371.
    13. M. Arik, J. Petroski, and S. Weaver, Thermal Challenges in the Future Generation Solid-State Lighting Application: Light Emitting Diodes, Proceedings Of the ASME/IEEE ITHERM-Conference, San Diego, 2002, pp. 113~120.
    14. J. Petroski, “Thermal Challenges Facing New Generation Lighting Emitting Diodes (LEDs) for Lighting Application”, Proceedings of SPIE, vol. 4779, 2002, pp. 215~222.
    15. N. Narendran and Y. Gu, “Solid-State Lighting: Failure Analysis of White LEDs”, Journal of Crystal Growth, vol. 268, 2004, pp. 449~456.
    16. S. Chhajed, Y. Xi, Y. L. Li, T. Gessmann, and E. F. Schubert, “Influence of Junction Temperature on Chromaticity and Color-Rendering Properities of Trichromatic White-Light Sources Based on Light-Emitting Dodes”, Journal of Applied Physics, vol. 97, 2005, pp. 054506-1~8.
    17. M. Arik, S. Weaver, C. Becker, M. Hsing, and A. Srivastava, “Effects of Localized Heat Generations Due to The Color Conversion in Phosphor Particles and Layers of High Brightness Light Emitting Diodes”, ASME/IEEE International Electronic Packaging Technical Conference and Exhibition - InterPACK’03, July6-11, 2003, Hawaii, USA.
    18. M. Arika, C. Beckerb, S. Weaverb, and J. Petroskic, “Thermal Management of LEDs: Package to System”, Proceedings of SPIE, vol. 5187, 2004, pp. 64~75.
    19. W. Frank, S. Martin, and H. Gerard, “High-Power LED Package Requirements”, Third International Conference on Solid State Lighting, Proceedings of the SPIE, vol. 5187, 2004, pp. 85~92.
    20. S. J. Chang, W. S. Chen, Y. C. Lin, C. S. Chang, T. K. Ko, and Y. P. Hsu, “Nitride-Based Flip Chip LEDs With Transparent Ohmic Contacts and Reflective Mirrors”, IEEE Transactions on Advanced Packaging, vol. 29, 2006, pp. 403~408.
    21. M. J. Jeng, C. C. Shiue, and L. B. Chang, “The Reflectivity of Mo/Ag/Au Ohmic Contacts on P-type GaN for Flip-Chip Light-Emitting Diode (FCLED) Applications”, Applied Surface Science, vol. 254, 2008, pp. 4479~4482.
    22. L. B. Chang, C. C. Shiue, and M. J. Jeng, “Formation Process of High Reflective Ni/Ag/Au Ohmic Contact for GaN Flip-Chip Light-Emitting Diodes”, Applied Physics Letters, vol. 90, 2007, pp. 163515~163517.
    23. S. J. Chang, W. S. Chen, S. C. Shei, T. K. Ko, C. F. Shen, and Y. P. Hsu, “Highly Reliable High Brightness GaN-Based Flip Chip LEDs”, IEEE Transactions on Advanced Packaging, vol. 30, 2007, pp. 752~757.
    24. W. S. Chen, S. C. Shei, S. J. Chang, and Y. K. Su, “Rapid Thermal Annealed InGaN/GaN Flip-Chip LEDs”, IEEE Transactions on Electronic Device, vol. 53, 2006, pp. 32~37.
    25. L. B. Chang, C. C. Shiue, and M. J. Jeng, “High Reflective p-GaN/Ni/Ag/Ti/Au Ohmic Contacts for Flip-Chip Light-Emitting Diode (FCLED) Applications”, Applied Surface Science, vol.255, 2009, pp. 6155~6158.
    26. C. C. Pan, C. M. Lee , J. W. Lin, G. T. Chen, and J. L. Chyi, “Luminescence Efficiency of InGaN Multiple-Quantum-Well Ultraviolet Light-Emitting-Diodes”, Applied Physics Letters., vol. 84, 2004, pp. 5249~5251.
    27. J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. OShea, M. J. Ludowise, G. Christenson, Y. C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Gotz, N. F. Gardner, R. S. Kern, and S. A. Stockman, “High-Power AlGaInN Flip-Chip Light-Emitting Diodes”, Applied Physics Letters, vol.78, 2001, pp. 3379~3381.
    28. X. A. Cao and S. D. Arthur, “High-Power and Reliable Operation of Vertical Light-Emitting Diodes on Bulk GaN”, Applied Physics Letters, vol. 85, 2004, pp. 3971~3973.
    29. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination With Solid State Lighting Technology”, IEEE Journal on Selected Topics in Quantum Electronic, vol. 8, 2002, pp. 310~320.
    30. X. Guo and E. F. Schubert, “Current Crowding in GaN/InGaN Light Emitting Diodes on Insulating Substrates”, Journal of Applied Physics, vol. 90, 2001, pp. 4191~4195.
    31. Y. J. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, “High Light-Extraction GaN-Based Vertical LEDs with Double Diffuse Surfaces”, IEEE Journal of Quantum Electronic, vol. 42, 2006, pp. 1196~1201.
    32. C. C. Kao, H. C. Kuo, K. F. Yeh, J. T. Chu, W. L. Peng, H. W. Huang, T. C. Lu, and S. C. Wang, “Light-Output Enhancement of Nano-Roughened GaN Laser Lift-Off Light-Emitting Diodes Formed by ICP Dry Etching”, IEEE Photonics Technology Letter, vol. 19, 2007, pp. 849~851.
    33. T. Jeong, K. H. Kim, H. H. Lee, S. J. Lee, S. H. Lee, J. H. Baek, and J. K. Lee, “Enhanced Light Output Power of GaN-Based Vertical Light Emitting Diodes by Using Highly Reflective ITO-Ag-Pt Reflectors”, IEEE Photonics Technology Letter, vol. 20, 2008, pp. 1932~1934.
    34. S. H. Huang, R. H. Horng, S. C. Hsu, T. Y. Chen, and D. S. Wu, “Surface Texturing for Wafer-Bonded Vertical-Type GaN/Mirror/Si Light Emitting Diodes”, Japanese Journal of Applied Physics, vol. 44, 2005, pp. 3028~3031.
    35. C. F. Chu, F. I Lai, J. T. Chu, C. C. Yu, C. F. Lin, H. C. Kuo, and S. C. Wang, “Study of GaN Light-Emitting Diodes Fabricated by Laser Lift-Off Technique”, Journal of Applied Physics, vol. 95, 2004, pp. 3916~3922.
    36. D. S. Wu, S. C. Hsu, S. H. Huang, C. C. Wu, C. E. Lee, and R. H. Horng, “GaN/Mirror/Si Light-Emitting Diodes for Vertical Current Injection by Laser Lift-Off and Wafer Bonding Techniques”, Japanese Journal of Applied Physics, vol. 43, 2004, pp. 5239~5242.
    37. W. S. Wong and T. Sands, “Fabrication of Thin-Film InGaN Light-Emitting Diode Membranes by Laser Lift-Off”, Applied Physics Letters, vol. 75, 1999, pp. 1360~1362.
    38. C. R. Miskys, M. K. Kelly, O. Ambacher, and M. Stutzmann, “Freestanding GaN-Substrates and Devices”, Physica Status Solidi (c), vol. 6, 2003, pp. 1627~1650.
    39. F. Miyashiro, N. Iwase, A. Tsuge, F. Ueno, M. Nakahashi, and T. Takahashi, “High Thermal Conductivity Aluminum Nitride Ceramic Substrate and Packages,” IEEE Transactions on Components Hybrids and Manufacturing Technology, vol. 13, 1990, pp. 313~319.
    40. T. Jeong, K. H. Kim, S. J. Lee, S. H. Lee, S. R. Jeon, S. H. Lim, J. H. Baek, and J. K. Lee, “Aluminum Nitride Ceramic Substrates-Bonded Vertical Light-Emitting Diodes”, IEEE Photonics Technology Letter, vol. 21, 2009, pp. 890~892.
    41. S. Bet, N. Quick, and A. Kar, “Laser-Doping of Silicon Carbide for p–n Junction and LED Fabrication”, Physica Status Solidi (a), vol. 204, 2007, pp. 1147~1157.
    42. S. I. Vlaskina, “Silicon carbide LED” Semiconductor Physics, Quantum Electronics & Optoelectronics, vol. 5, 2002, pp. 71~75.
    43. S. J. Chang, W. S. Chen, Y. C. Lin, C. S. Chang, T. K. Ko, Y. P. Hsu, C. F. Shen, J. M. Tsai, and S. C. Shei, “Nitride-Based Flip-Chip LEDs with Transparent Ohmic Contacts and Reflective Mirrors”, IEEE Transactions on Advanced Packaging, vol. 29, 2006, pp. 403~408.
    44. T. Paskova, D. A. Hanser, and K. R. Evans, “GaN Substrates for III-Nitride Devices”, Proceedings of the IEEE, vol. 98, 2010, pp. 1324~1338.
    45. S. Figge, T. Bottcher, J. Dennemarck, R. Kroger, T. Paskova, B. Monemar, and D. Hommel, “Optoelectronic Devices on Bulk GaN”, Journal of Crystal Growth, vol. 281, 2005, pp. 101~106.
    46. A. Tyagi, H. Zhong, N. N. Fellows, M. Iz, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High Brightness Violet InGaN/GaN Light Emitting Diodes on Semipolar (1011) Bulk GaN Substrate”, Japanese Journal of Applied Physics, vol. 46, 2007, pp. L129~L131.
    47. H. Zhong, A. Tyagi, N. N. Fellows, F. Wu, R. B. Chung, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High Power and High Efficiency Green Light Emitting Diode on Free-Standing Semipolar (1011) Bulk GaN Substrate”, Applied Physics Letters, vol. 90, 2007, pp. 233504~233506.
    48. K. Fujito, S. Kubo, and I. Fujimura, “Development of Bulk GaN Crystals and Nonpolar/Semipolar Substrate by HVPE”, MRS Bulletin, vol. 34, 2009, pp. 313~317.
    49. K. Akihiko, K. Mizue, T. Makoto, and K. Katsumi, “InGaN/GaN Multiple Quantum Disk Nano Column Light-Emitting Diodes Grown on (111) Si Substrate”, Japanese Journal of Applied Physics, vol. 43, 2004, pp. 1524~1526.
    50. T. Egawa and B. A. Shuhaimi, “High Performance InGaN LEDs on Si (111) Substrates Grown by MOCVD”, Journal of Physics D: Applied Physics, vol. 43, 2010, pp. 354008~354015.
    51. T. Sugahara, J. S. Lee, and K. Ohtsuka,“Role of AlN/GaN Multilayer in Crack-Free GaN Layer Growth on 5' Si (111) Substrate”, Japanese Journal of Applied Physics, vol. 43, 2004, pp. L1595-L1597.
    52. Osram Opto Semiconductors, “Osram Opto Unveils R&D Results from GaN LEDs Grown on Silicon”, 2012
    53. M. Pecht, Integrated Circuit, Hybrid, and Multichip Module Package Design Guidelines, John Wiley & Sons, New York, USA, 1994, Chapter 7.
    54. J. H. Lau, Flip Chip Technologies, McGraw-Hill, New York. USA, 1996, Chapter 1.
    55. P. E. Hovsepian, D. B. Lexis, and W. D. Munz, “Recent Progress in Large Scale Manufacturing of Multilayer/Superlattice Hard Coatings”, Surface and Coatings Technology, vol. 133, 2000, pp. 166~175.
    56. R. S. Nowicki, and M. A. Nicolet, “General Aspects of Barrier Layers for Very-Large-Scale Integration Applications II: Practice”, Thin Solid Films, vol. 96, 1982, pp. 317~326.
    57. M. A. Nicolet and M. Bartur, “Diffusion Barriers in Layered Contact Structures”, Journal of Vacuum Science, vol. 19, 1981, pp. 786~793.
    58. T. Oppert, E. Zakel, and T. Teutsch, “A Roadmap to Low Cost Flip Chip Technology and Chip Size Packaging Using Electroless Nickel Gold Bumping”, Flip IEMT/IMC Proceeding, 1998, pp. 106~113.
    59. J. H. Lau, Chip on Board Technologies for Multichip Modules, Van Nostrand Reinhold, New York, USA, 1994, Chap. 5.
    60. A. Scanduma, A. Porto, L. Mameli, Viscuso, V. Del, and S. Pignataro, “Characterization and Reliability of Ti/Ni/Au, Ti/Ni/Ag and Ti/Ni Back-Side Metallizations in the Die-bonding of Power Electronic Devices”, Surface and Interface Analysis, vol. 22, 1994, pp. 353~357.
    61. V. Felmetsgera, “High-Adhesive Back Side Metallization of Ultrathin Wafers” Journal of Vacuum Science & Technology B, vol. 25, 2007, pp. 881~995.
    62. D. Resnik, J. Kovač, D. Vrtačnik, and S. Amon, “Structural Investigation of Direct Current Magnetron Sputtered Ti/NiV/Ag Layers on n+Si Substrate”, Thin Solid Films, vol. 516, 2008, pp. 7497~7504.
    63. D. Resnik, J. Kovač, D. Vrtačnik, U. Aljancic, M. Mozek, A. Zalar, and S. Amona, “Investigation of Interface Properties of Ti/Ni/Ag Thin Films on Si Substrate”, Vacuum, vol. 82, 2008, pp. 162~165.
    64. W. L. Jang, T. C. Chiu, and K. L. Lin, “Effect of Thermal Cycles on Adhesion Strength of Ag/Ni/Ti film on AlN Substrate”, Thin Solid Films, vol. 519, 2011, pp. 5539~5543.
    65. G. Ghosh, “Dissolution and Interfacial Reactions of Thin-Film Ti/Ni/Ag Metallizations in Solder Joints”, Acta Material, vol. 49, 2001, pp. 2609~2624.
    66. G. Ghosh, “Reactive Interdiffusion between a Lead-Free Solder and Ti/Ni/Ag Thin-Film Metallizations”, Journal of Electronic Materials, vol. 33, 2004, pp. 229~240.
    67. A. Sozza, C. Duab, A. Kerlain, C. Brylinski, and E. Zanoni, “Long-Term Reliability of Ti/Pt/Au Metallization System for Schottky Contact and First-Level Metallization on SiC MESFET” Microelectronics Reliability, vol. 44, 2004, pp. 1109~1113.
    68. A. K. Sinha, T. E. Smith, and T. T. Sheng, “Thin Film Diffusion of Platinum in Gold”, Thin Solid Films, vol. 22, 1974, pp. 1~10.
    69. Y. Kitaura, “Long Term Reliability of Pt and Mo Diffusion Barriers in Ti–Pt–Au and Ti–Mo–Au Metallization System for GaAs Digital Integrated Circuits”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 12, 1994, pp. 2986~2991.
    70. T. Ito, I. Taguchi, M. Soga, M. Mitsuhashi, T. Shinohara, T. Ogashiwa, T. Nishimori, and N. Akiyama, “Thermal Stability of Back Side Metallization Multilayer for Power Device Application”, Microelectronics Reliability, vol. 52, 2012, pp. 199~205.
    71. H. Okamoto and T. B. Massalski, Phase Diagrams of Binary Gold Alloys, ASM International, Metals Park, Ohio, 1987, pp. 4~12
    72. M. Ohring, Materials Science of Thin Films, Second Edition, Academic Press, San Diego, 2002, p. 504.
    73. T. I. Shih, Y. C. Lin, J.G. Duh, and Tom Hsu, “Electrical Characteristics for Sn-Ag-Cu Solder Bump with Ti/Ni/Cu Under-Bump Metallization after Temperature Cycling Tests”, Journal of Electronic Materials, vol. 35, 2006, pp. 1773~1780.
    74. Raymond A. Serway, Principles of Physics, Second Edition, Fort Worth, Texas, London: Saunders College Pub., 1998, p. 602.
    75. K. Sugawara, M. Kawamura, Y. Abe, and K. Sasaki, “Comparison of the Agglomeration Behavior of Ag(Al) Films and Ag(Au) Films”, Microelectronic Engineering archive, vol. 84, 2007, pp. 2476~2480.
    76. A. Bukaluk, “Analysis of Diffusion Mechanisms in Thin Polycrystalline Au-Ag Films Using Auger Electron Spectroscopy”, Surface and Interface Analysis vol. 5, 1983, pp. 20~27.
    77. M. Singleton and P. Nash, Ag-Ni Phase Diagram, Binary Alloy Phase Diagrams, 1991, p. 65.
    78. J. L. Murray, The Ni-Ti (nickel-titanium) System. Phase Diagrams of Binary Titanium Alloys, 1987, p. 258.
    79. S. Singh, S. Basu, P. Bhatt, and A. K. Poswal, “Kinetics of Alloy Formation at the Interfaces in a Ni-Ti Multilayer:X-ray and Neutron Reflectometry Study”, Physical Review B, vol. 79, 2009, pp. 195435~195443.
    80. L. J. Chen, “Solid State Amorphization in Metal/Si Systems”, Material Science Engineering R, vol. 29, 2000, pp. 115~152.
    81. L. J. Chen, J. H. Lin, T. L. Lee, C. H. Luo, W. Y. Hsieh, J. M. Liang, and M. H. Wang, “High Resolution Electron Microscopy of Amorphous Interlayers between Metal Thin Films and Silicon”, Microscopy Research and Technique, vol. 40, 1998, pp. 136~151.
    82. S. L. Cheng, J. J. Jou, L. J. Chen, and B. Y. Tsui, "Formation of C54-TiSi2 in Titanium on Nitrogen IonImplanted (001) Si with a Thin Interposing Mo Layer", Journal of Materials Research, vol. 14, 1999, pp. 2061~2069.
    83. A. R. Wazzan, P. Tung, and L. B. Robinson, “Diffusion of Silver into Nickel Single Crystals”, Journal of Applied Physics, vol. 42, 1971, pp. 5316~5320.
    84. W. C. Mallard, A. B. Gardner, R. F. Bass, and L. M. Slifkin, “Self-Diffusion in Silver-Gold Solid Solutions”, Physical Review, vol. 129, 1963, pp. 617~625.

    下載圖示 校內:2013-08-13公開
    校外:2017-08-13公開
    QR CODE