簡易檢索 / 詳目顯示

研究生: 林正浩
Lin, Chen-Hau
論文名稱: 地下水溶解氣體現地揮發機制之研究-安通溫泉地下水水氡及其他溶解氣體(甲烷、乙烷及三氯氟甲烷)濃度的同步變化
In-situ volatilization process of groundwater-dissolved gases : Synchronous concentration changes in radon, methane, ethane and trichlorofluoromethane at Antung hot spring
指導教授: 郭明錦
Kuo, Ming-Ching Tom
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 84
中文關鍵詞: 地震前兆地下水甲烷乙烷三氯氟甲烷
外文關鍵詞: Earthquake precursor, groundwater, radon, methane, ethane, trichlorofluoromethane
相關次數: 點閱:98下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地下水水氡現地揮發機制被提出用來解釋自2003年7月起至今在安通溫泉已捕捉到三次地下水水氡濃度異常下降的地震前兆,(1)2003 = 6.8 成功地震,(2)2006 = 6.1 台東地震,及(3)2008 = 5.4 安通地震。以上三次地震震央分別距離安通溫泉水氡監測井(D1)24 公里、52公里和13公里。為支持地下水溶解氣體現地揮發機制,在2010/11/30至2011/3/15期間同時監測安通溫泉地下水水氡、甲烷及乙烷。從水氡、甲烷及乙烷同步的濃度變化趨勢間接證實地下水溶解氣體現地揮發機制。另外,建議在安通溫泉同時觀察地下水三氯氟甲烷及其他溶解氣體(水氡、甲烷及乙烷)的濃度變化,有機會進一步佐證地下水溶解氣體現地揮發機制。

    Radon volatilization mechanism into the gas phase was hypothesized to explain the anomalous declines in groundwater radon precursory to three major earthquakes – (1) 2003 MW = 6.8 Chengkung, (2) 2006 MW = 6.1 Taitung, and (3) 2008 MW = 5.4 Antung in Taiwan. The epicenters were located 24 km, 52 km, and 13 km, respectively, from the Antung radon-monitoring well D1. To verify the mechanism of in-situ volatilization, we monitored groundwater-dissolved ethane in addition to radon and methane at well D1 in the Antung hot spring from November 30, 2010 to March 15, 2011. The mechanism of in-situ radon volatilization has been corroborated by the simultaneous concentration changes in groundwater-dissolved radon, methane, and ethane observed during the above time period. It is recommended to monitor trichlorofluoromethane (CFC-11) in addition to radon, methane, and ethane at well D1 to further support the mechanism of in-situ volatilization.

    中文摘要...........................................I 英文摘要...........................................II 致謝..............................................III 目錄..............................................IV 表目錄.............................................VI 圖目錄.............................................VII 第一章 緒論........................................1 1-1 前言..........................................1 1-2 研究目的.......................................6 1-3 研究流程.......................................7 第二章 文獻回顧.....................................10 2-1 地震前地球化學異常變化...........................10 2-2 氡與地震前兆之關聯...............................17 2-3 地下水水氡現地揮發機制............................25 第三章 研究區域背景調查...............................28 3.1 台灣東部地質....................................28 3.2 安通監測站區域背景調查............................34 第四章 研究方法.....................................43 4.1 地下水現地採樣方法...............................43 4.1-1 地下水中氡及甲/乙烷現地採樣方法..................43 4.1-2 地下水中CFC-11現地採樣方法.....................46 4.2 實驗室分析方法..................................47 4.2-1 地下水水氡實驗室分析方法........................47 4.2-2 地下水中甲/乙烷實驗室分析方法及品保品管............52 4.2-3 地下水CFC-11實驗室分析方法及品保品管.............55 第五章 結果與討論....................................70 5.1安通溫泉地下水水氡、甲烷及乙烷濃度的同步變化...........70 5.2 安通溫泉地下水中CFC-11分析結果.....................73 第六章 結論與建議....................................76 6.1 結論...........................................76 6.2 建議...........................................77 參考文獻............................................78

    1.何春蓀,台灣地質概論-台灣地質圖說明書,增訂第二版,經濟部中央地質調查所出版,1986。
    2.王源、楊昭男、陳文山,經濟部中央地質調查所出版台灣地質圖說明書圖幅第四十八號,1992。
    3.徐鐵良,台灣海岸山脈中的利吉混同層。台灣省地質調查所彚刊,第二十五號,1976。
    4.范愷軍,地下水水氡濃度異常下降及地震前兆機制之研究:東台灣2003Mw 6.8成功地震,成功大學,2009。
    5.楊燦堯、宋聖榮、傅慶州、蘇春旭、劉聰桂、陳正宏,活動斷層地球化學監測現況與成果,2004年台灣活動斷層與地震災害研討會論文集, 120-137,中華民國九十三年十月,2004。
    6.游明聖,斷層活動所造成之災害-以民國四十年花蓮、台東地震為例,台灣博物,第十五卷,第二期,16-25,中華民國八十五年,1996。
    7.魏明通,核化學,五南圖書,2005。
    8.黃盈穎,應用地下水氡及甲烷觀測池上斷層地震前兆:2011/1/1-2011/5/31,國立成功大學,2011。
    9.林意琪,應用地下水氡及甲烷觀測地震前兆之研究:海岸山脈南段,國立成功大學,2010。
    10.財團法人國家實驗研究院科技政策研究與資訊中心,http://enjoysci.narl.org.tw
    11.台灣綠島自然之美網站,http://blog.xuite.net/wild.fun/blog/34151782
    12.彰師大地球科學遠距進修課程網站,http://geo3w.ncue.edu.tw/bsrapage/geoscience/
    13.Angelier, J., Preface to the special issue on “Geodynamics of the Eurasian-Philippine Sea Plate Boundary”. Tectonophysics 125, IX-X, 1986.
    14.Angelier, J., Chu, H.T. and Lee, J.C., Shear concentration in a collision zone: kinematics of the active Chihshang Fault, Longitudinal Valley, eastern Taiwan. Tectonophysics 274, 117–144, 1997.
    15.Angelier, J., Chu, H.T., Lee, J.C. and Hu, J.C., Active faulting and earthquake hazard: The case study of the Chihshang fault, Taiwan. J. Geodyn. 29, 151-185, 2000.
    16.Barsukov, V. L., Serebrennikov, V. S., Belyaev, A. A., Bakaldin,Y. A. and Aresnyeva, R.V., Some experience in unraveling geochemical earthquake precursors. Pure and Applied Geophysics 122, 157-163, 1985.
    17.Biagi, P. F., Castellana1, L., Piccolo1, R., Minafra1, A., Maggipinto, G., Ermini, A., Capozzi, V., Perna, G., Khatkevich, Y. M., and Gordeev, E. I., Disturbances in groundwater chemical parameters related to seismic and volcanic activity in Kamchatka (Russia), Natural Hazards and Earth System Sciences 4: 535–539, 2004.
    18.Chen, W.S., and Wang, Y., Geology of the Coastal Range, eastern Taiwan. Geology of Taiwan 7, 1996.
    19.Clever, H. L., Krypton, Xenon and Radon - Gas Solubilities, Solubility Data Series 2, Pergamon Press, Oxford, UK, 1979.
    20.Hauksson, E., Radon content of groundwater as an earthquake precursor: Evaluation of worldwide data and physical basis. J. Geophys. Res. 86, no. B10, 9397-9410, 1981.
    21.Igarashi, G. and Wakita, H., Geochemical and hydrological observations for earthquake prediction in Japan. Journal of Physics of the Earth 43, no. 5, 585-598, 1995.
    22.Igarashi, G., Saeki, S., Takahata, N., Sumikawa, K., Tasaka, S., Sasaki, Y., Takahashi, M. and Sano, Y., Ground-water radon anomaly before the Kobe earthquake in Japan. Science 269, no. 5220, 60-61, 1995.
    23.International Atomic Energy Agency (IAEA), Use of chlorofluorocarbons in hydrology, 2006
    24.Katz, D. L., Handbook of Natural Gas Engineering, McGraw Hill, New 158 York, 1959
    25.Kuo, M.C.T., Fan, K., Kuochen, H. and Chen, W., A mechanism for anomalous decline in radon precursory to an earthquake. Ground Water 44, no. 5, 642-647, 2006a.
    26.Kuo, T., Fan, K., Kuochen, H., Han, Y., Chu, H. and Lee, Y., Anomalous decrease in groundwater radon before the Taiwan M6.8 Chengkung Earthquake. Journal of Environmental Radioactivity 88, no. 1, 101-106, 2006b.
    27.Kuo, T., Cheng, W., Lin, C., Fan, K., Chang, G. and Yang, T., Simultaneous declines in radon and methane precursory to 2008 Mw 5.0 Antung earthquake: corroboration of in-situ volatilization. Natural Hazards 54, 367-372, 2010.
    28.Lee, J.C., Angelier, J., Chu, H.T., Hu, J.C. and Jeng, F.S., Monitoring active fault creep as a tool in seismic hazard mitigation: insights from creepmeter study at Chihshang, Taiwan. C.R. Geoscience 337, no. 13, 1200-1207, 2005.
    29.Liu, K.K., Yui, T.F., Yeh, Y.H., Tsai, Y.B. and Teng, T.L., Variations of radon content in groundwaters and possible correlation with seismic activities in northern Taiwan. Pure Applied Geophys. 122, 231-244, 1984/85.
    30.Nisith, K.D., Rakesh, K.B., Debasis, G., Prasanta, S. and Bikash, S., Anomalous fluctuation of radon, gamma dose and helium emanating from a thermal spring prior to an earthquake. Science, 89, 8, 1399-1404, 2005.
    31.Scholz, C.H., Sykes, L.R. and Aggarwal, Y.P., Earthquake prediction: A physical basis. Science 181, no. 4102, 803-810, 1973.
    32.Sugisaki, R., Ito, T., Nagamine, K. and Kawabe, I., Gas geochemical changes at mineral springs associated with the 1995 southern Hyogo earthquake (M = 7.2), Japan. Earth and Planetary Science Letters, 139, 239-249 , 1996.
    33.Teng, T., Some recent studies on groundwater randon content as an earthquake Precursor. Journal of Geophysical Research, 85, 3089-3099, 1980.
    34.Thomas, D., Geochemical Precursors to Seismic Activity. Pageoph 126, no. 2-4, 241-266, 1988.
    35.Thompson, G. T. and Hayes, J. M., Trichlorofluoromethane in groundwater - a possible tracer and indicator of groundwater age, Water Resour. Res., 15(3): 546-554, 1979
    36.Tsunomori, F. and Kuo, T., A mechanism for radon decline prior to the 1978 Izu-Oshima-Kinkai earthquake in Japan. Radiation Measurements, 45, 139-142, 2010.
    37.U.S. Geological Survey web site, 2010,
    http://water.usgs.gov/lab/chlorofluorocarbons
    38.Wakita, H., Nakamura, Y., Notsu, K., Noguchi, M. and Asada, T., Radon anomaly: A possible precursor of the 1978 Izu-Oshima-kinkai earthquake. Science 207, no. 4433, 882-883, 1980.
    39.Wakita, H., Igarashi, G. and Notsu, K., An anomalous radon decrease in groundwater prior to an M6.0 earthquake: A possible precursor?. Geophys. Res. Lett. 18, no. 4, 629-632, 1991.
    40.Wakita, H., Geochemical challenge to earthquake prediction. Proc Natl Acad Sci 93: 3781-3786, 1996.
    41.Yang, T.F., Walia, V., Chyi, L.L., Fu, C.C., Chen, C.H., Liu, T.K., Song, S.R., Lee, C.Y. and Lee, M., Variations of soil radon and thoron concentrations in a fault zone and prospective earthquakes in SW Taiwan. Radiation Measurements 40, 496-502, 2005.

    下載圖示 校內:立即公開
    校外:2014-12-12公開
    QR CODE