| 研究生: |
蔡偉民 Tsai, Wei-Min |
|---|---|
| 論文名稱: |
無線感測網路之階層狀分散式訊源編碼技術與最佳化傳輸排程 Hierarchical Distributed Source Coding Scheme and Optimal Transmission Scheduling for Wireless Sensor Networks |
| 指導教授: |
鄭憲宗
Cheng, Sheng-Tzong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 42 |
| 中文關鍵詞: | 分散式訊源編碼 、編碼拓樸 、適應性粒子群最佳化演算法 、無線感測網路 |
| 外文關鍵詞: | Distributed source coding, Coding topology, Adaptive particle swarm optimization, Wireless sensor networks |
| 相關次數: | 點閱:93 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
分散式訊源編碼 (DSC)可被用來壓縮無線感測網路上一群具有相關性的感測資料而感測節點間彼此不需互相溝通,也不必知道彼此的感測資訊。這些感測節點只需要將壓縮後的資料送到中控端做解碼。然而,關於如何設計一個傳輸上的排程機制來保護這些經過DSC所壓縮後封包的議題,卻很少在文獻上被提及。本篇論文,我們提出一個創新的編碼拓樸 – 階層式編碼拓樸,此拓樸由各感測節點間的感測值依照相關程度所建立而成,相較於以往靜態編碼拓樸,將更能適應動態變化的無線感測環境。而我們也將此編碼拓樸及網路拓樸合併考慮來思考傳輸上的議題。透過傳輸上的保護,階層分散式訊源編碼的解碼品質將被大量提升。
階層分散式訊源編碼的做法能被進一步的應用在任何無線感測網路拓樸上,大型的網路環境下,整體效能並不會有所下降。模擬結果顯示,相較以往的編碼拓樸,階層編碼拓樸下的訊源編碼有更好的解碼品質及更高的壓縮率。同時在封包錯誤率高的無線感測網路環境中,透過最佳化傳輸排程機制的保護,將有效減緩解碼的品質的下降。
Distributed source coding (DSC) can be used to compress multiple correlated sensor measurements. These sensors send their compressed data to a central station for joint decoding. However, the issue on designing an optimal transmission scheduling scheme of DSC packets for WSNs have not been well addressed in the literature. In this work, we proposed a novel DSC coding topology – hierarchical coding topology, which is a construction of inter-node coding dependency with sensing-driven and correlated manner. And the interaction between hierarchical coding topology and transmission will be considered. We optimize the transmission behavior of DSC nodes to achieve better decoding quality.
Our proposing approach can further be practically applied to any WSN topologies with correlated source coding nodes. Simulation shows that our work can achieve higher decoding accuracy and compression rate than previous approaches, and the decoding accuracy would not have much degradation under the error-prone wireless environment.
[1] D. Slepian and J.K. Wolf, “Noiseless coding of correlated information sources,” IEEE Trans. Inform. Theory, vol. 19, pp. 471–480, July 1973.
[2] A. Wyner and J. Ziv, “The rate-distortion function for source coding with side information at the decoder,” IEEE Trans. Inform. Theory, vol. 22, pp. 1-10, January 1976.
[3] X. Zixiang, A.D. Liveris, S. Cheng, “Distributed source coding for sensor networks,” IEEE Signal Processing Magazine, vol. 21, Issue 5, pp. 80-94, Sept. 2004.
[4] Zuoyin Tang, I. A. Glover, A. N. Evans and Jianhua He, “Energy Efficient Transmission Protocol for Distributed Source Coding in Sensor Networks,” IEEE International Conference on Communications, pp. 24-28, June 2007.
[5] R. W. Wang, D. Peng, H. Wang, H. Sharif, and H. H. Chen, “Taming underlying design for energy efficient distributed source coding in multi-rate wireless sensor network," in Proc. IEEE VTC, pp. 124-129, Apr. 2007.
[6] D. Marco and D. Neuhoff, “Reliability vs. Efficiency in Distributed Source Coding for Field-Gathering Sensor Networks,” Third International Symposium on Information Processing in Sensor Networks, pp. 161-168, 2004.
[7] C. Fischione, S. Tennina, F. Santucci and F. Graziosi , “Reliability and Efficiency Analysis of Distributed Source Coding in Wireless Sensor Networks,” IEEE ICC proceedings, pp. 161-168, 2009.
[8] J. Chou, D. Petrovic, and K. Ramchandran, “A distributed and adaptive signal processing approach to reducing energy consumption in sensor networks," in Proc. IEEE INFOCOM, pp. 1054-1062, 2003.
[9] C.W. Reynolds, Flocks, Herds, and Schools, “A Distributed Behavioral Model," in Computer Grapfics, pp. 25-34, 1987.
[10] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang. “A Two-Tier Data Dissemination Model for Large-Scale Wireless Sensor Networks,” In Proceedings of the First ACM International Workshop on Wireless Sensor Networks and Applications, 2002.
[11] Wei Wang, Dongming Peng, Honggang wang, Hamid Sharif and Hsiao-Hwa Chen, “Cross-Layer Multirate Interaction with Distributed Source Coding in Wireless Sensor Networks,” IEEE Trans. Wireless Communications, vol. 8. No. 2, pp. 787–795, Feb 2009.
[12] Seok-Ho Chang, Minjoong Rim, Pamela C. Cosman and Laurence B. Milstein, “Optimal Multiplexed Hierarchical Modulation for Unequal Error Protection of Progressive Bit Streams,” IEEE Globecom, 2009.
[13] Shashi Borade, Baris Nakiboglu and Lizhong Zheng, “Unequal Error Protection: An Information-Theoretic Perspective,” IEEE Trans. Inform. Theory, vol. 55, pp. 5511–5539, Dec 2009.
[14] Stann, F., and Heidemann, J. “RMST: Reliable Data Transport in Sensor Networks,” In Proceedings of the First International Workshop on Sensor Net Protocols and Applications Anchorage, pp. 102-112, April 2003.
[15] F. Stann and J. Heidemann, “RMST: Reliable data transport in sensor networks,” in Proc. 1st IEEE Intl. Workshop on Sensor Network Protocols and Applications (SNPA), Anchorage, Alaska, May 2003.
[16] IEEE Std 802.15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs), IEEE Computer Society, 2003.
[17] Zhan, Z-H., Zhang, J., Li, Y., Chung, H, "Adaptive Particle Swarm Optimization," IEEE Transactions on Systems, Man, and Cybernetics, pp. 1362-1381, 2009.
[18] Ciuprina, G.; Ioan, D.; Munteanu, I. Use of intelligent-particle swarm optimization in electromagnetics. IEEE Transaction on Magnetics, pp.1037-1040, 2002.
[19] I. F. Akyildiz,M. C. Vuran, and O. B. Akan, “On exploiting spatial and temporal correlation in wireless sensor networks,” Proceedings of WiOpt’04: Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, Cambridge, UK, March 2004.
[20] G. Gasella and R.L. Berger, Statistical Inference. Duxbury Press, June 2001.
校內:2012-08-18公開