簡易檢索 / 詳目顯示

研究生: 康莉莉
Kang, Li-li
論文名稱: 生醫材料表面性質對骨母細胞初期黏附之影響
The Effect of Properties of Biomaterials on Cell Adhesion Force
指導教授: 李澤民
Lee, Tzer-Min
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 77
中文關鍵詞: 射頻濺鍍鈣磷薄膜類骨母細胞細胞黏附力
外文關鍵詞: calcium phosphate thin film, osteoblasts, cell adhesion force, sputter deposition
相關次數: 點閱:98下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 了解細胞黏附力於生醫材料上的表現可最為評估生醫材料親合性的方法。細胞的黏附會影響細胞增生與分化。然而,量測細胞黏附力的設備大多需要精密的儀器,設備較複雜。所以我們設計一種簡單的動態施力設備,可快速測得細胞與基材的黏附力。利用已知力量的刮細胞量測技術來做細胞黏附力的比較。選用鈣磷生醫陶瓷與純鈦當作測試基材。因此本篇研究目的是設計量測細胞黏附力的方法,並以鈣磷生醫陶瓷與純鈦來觀察類骨母細胞的反應。實驗分成四部份:第一部份-確定射頻功率對鈣磷薄膜沉積性質的影響。以alpha-step、SEM、EDS和XRD分析結構與化學組成,實驗結果顯示披覆在試片上的鈣磷薄膜為非結晶相,經500℃熱處理後轉換為結晶相的鈣磷薄膜。第二部份製備兩種表面粗糙度,分別為以砂紙號數#180研磨與研磨到#1500號後使用Al2O3拋光。產生的表面粗糙度為(Ra = 0.48,0.04 micrometer)。第三部份-量測細胞在生醫陶瓷表面的黏附力,以我們設計的動態施力方式量測細胞黏附力並與刮細胞方式量測細胞黏附力作比較。實驗結果顯示細胞於Polish組黏附強度較高的為Polish CaP-h,次之為Polish和Polish CaP,與刮細胞的量測方式結果相同;#180組力量較高的為#180,次之為#180 CaP-h和#180 CaP與刮細胞方式相異,在統計上沒有顯著差異。由免疫螢光染色觀測細胞骨架經離心後無明顯變化。第四部份使用SEM評估細胞在不同條件試片上黏附型態,在Polish組和#180組可觀察到細胞於CaP-h表面黏附面積最大,其次是沒有鈣磷塗層的鈦,接著是CaP塗層試片。在Polish組細胞黏附面積與使用動態施力設備和刮細胞方式量測結果呈現正相關,然而較粗糙的#180組別在兩種方式的量測下無一致趨勢。因此推測動態施力設備可運用於較細緻的表面,不適合量測粗糙質較高的表面。此實驗結果得知CaP-h相對於CaP有較佳的生物活性而讓細胞展現較高的黏附力量。

    Cell adhesion strength on biomaterials can assess biomaterials biocompatibility. Cellular attachment influences cellular proliferation and differentiation. However, quantitative methods for examining cell adhesion mostly need accurate instrument, which is relatively complicated. We develop a simple and easy technique to quantitatively measure the adhesion force between cells and substrate. To utilize cytodetachment technique to make comparison that cells adhesion strength. We select the calcium phosphorus bioceramics and commercially titanium as substrate to make comparison. The aim of this study was to develop a dynamic technique to quantitatively measure the adhesive force between cells and substrata. The study is divided into four parts. PartΙ. To determine the influence of discharge RF power level on the properties of the deposited Ca/P films on titanium substrates. The structure and chemical composition were investigated with alpha-step (thickness), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results showed that as-sputtered CaP coatings were amorphous, and 500°C heat-treated CaP coatings were crystalline. Part Ⅱ. Titanium alloy disks are prepared by wet grinding by grit silicon carbide paper #180 and wet grinding to #1500 then polishing by Al2O3 powder to the surface roughness with Ra values of 0.48 and 0.04 micrometer, respectively. Part Ⅲ. The measurement of cell adhesion force on bioceramics will be compared with dynamic applied forced and cytodetachment technique. The results showed that cell adhesion force on polish CaP-h more strength than polish CaP and Polish CaP that the same the cytodetachment. However, the cell adhesion force on #180 more strength than #180 CaP-h and #180 CaP that different to cytodetachment. Part Ⅳ. To evaluate the cells morphology in different conditions. Cells displayed well spreading on CaP-h coating than non-coated titanium and CaP. The cell attachment area and cell adhesion force is being connected on Polish group. However rougher #180 group not consistent tendency. Therefore, the dynamic technique utilize to smooth surface not roughness surface. This work shows that CaP-h film fave bettter bioactivity for cell adhesion.

    摘要 Ⅰ ABSTRACT Ⅱ 誌謝 Ⅲ 目 錄 Ⅳ 表 目 錄 Ⅶ 圖 目 錄 Ⅷ 第一章 緒論……………………………………………1 1.1 前言………………………………………………1 1.1.1生醫材料的應用………………………………1 1.1.2生醫材料對生物反應的影響…………………2 1.2文獻回顧…………………………………………3 1.2.1質化量测……………………………………3 1.2.2量化量測……………………………………4 1.2.3量測細胞黏附力的方法比較………………6 1.3研究計畫之動機……………………………………7 第二章 實驗方法與步驟…………………………………8 2.1第一部份:鈦合金表面處理 ………………………8 2.1.1試片準備……………………………………8 2.1.2試片表面研磨………………………………8 2.1.3試片滅菌……………………………………9 2.2第二部分:鍍層製備………………………………9 2.2.1濺鍍系統……………………………………9 2.2.2靶材製備……………………………………9 2.2.3鍍製薄膜……………………………………9 2.2.4熱處理………………………………………9 2.2.5鈦表面性質量測與分析……………………10 2.2.6鍍層性質量測與分析………………………10 2.3第三部份:生物相容性評估…………………………11 2.3.1細胞選取與培養……………………………11 2.3.2細胞型態觀察………………………………12 2.3.3免疫螢光染色………………………………12 2.3.4細胞黏附形態分析…………………………12 2.4第四部份:細胞黏附力量測…………………………12 2.4.1動態施力設備………………………………12 2.4.2刮細胞量測…………………………………14 2.5統計分析……………………………………………15 第三章 結果與討論………………………………………16 3.1第一部份:表面粗糙度量測…………………………16 3.1.1粗糙度分析…………………………………16 3.2第二部份:鍍層性質量測與分析……………………16 3.2.1薄膜成份分析………………………………16 3.2.2鍍膜厚度量測………………………………18 3.2.3薄膜元素分析………………………………18 3.2.4表面接觸角量測……………………………19 3.3第三部份:生物相容性評估………………………20 3.3.1細胞形態觀察………………………………20 3.3.2免疫螢光染色………………………………20 3.4第四部份:細胞黏附力量測………………………21 3.4.1動態施力設備………………………………21 3.4.2刮細胞量測…………………………………24 第四章 結論………………………………………………26 參考文獻……………………………………………………27 表目錄 表3.1試片表面粗糙度 (Mean±SD)………………………32 表3.2表面粗糙度之ANOVA表…………………………32 表3.3 Duncan事後檢定……………………………………32 表3.4試片滅菌前表面接觸角 (Mean±SD)………………33 表3.5試片滅菌前表面接觸角之ANOVA表……………33 表3.6 Duncan事後檢定……………………………………33 表3.7試片滅菌後表面接觸角 (Mean±SD)………………34 表3.8試片滅菌後表面接觸角之ANOVA表……………34 表3.9 Duncan事後檢定……………………………………34 圖目錄 圖1.1 懸桿施力示意圖………………………………………35 圖1.2 微量吸取器系統示意圖………………………………36 圖1.3 微量吸取器吸取細胞實驗過程圖……………………37 圖1.4 平行流體槽示意圖……………………………………38 圖1.5 離心法實驗流程圖……………………………………39 圖1.6 旋轉盤設備示意圖( CDA)……………………………40 圖3.1 實驗流程示意圖………………………………………41 圖2.2 動態施力設備…………………………………………42 圖2.3 PhotoCap影像組合……………………………………43 圖2.4 Image J影像分析………………………………………44 圖2.5 細胞刮取儀[29]………………………………………45 圖2.6 實驗影像擷取[29]……………………………………46 圖3.1 六組表面粗糙度示意圖………………………………47 圖3.2 六組表面形態示意圖…………………………………48 圖3.3 不同氬氣流量示意圖…………………………………49 圖3.4 氬氣流量6sccm示意圖………………………………50 圖3.5 氬氣流量7sccm示意圖………………………………51 圖3.6 氬氣流量8sccm示意圖………………………………52 圖3.7 功率對薄膜影響示意圖………………………………53 圖3.8 基板溫度對薄膜影響示意圖…………………………54 圖3.9 熱處理溫度對薄膜影響示意圖………………………55 圖3.10不同熱處理溫度對薄膜形態影響示意圖……………56 圖3.11試片表面的元素含量圖………………………………57 圖3.12 不同功率對鈣磷比示意圖……………………………58 圖3.13 熱處理前與熱處理後薄膜鈣磷比示意圖……………59 圖3.14 元素分布圖(Mapping)…………………………………60 圖3.15 試片滅菌前表面親疏水性示意圖……………………61 圖3.16 試片滅菌後表面親疏水性示意圖……………………62 圖3.17 試片滅菌前後接觸角數值示意圖……………………63 圖3.18 細胞黏附於#180,#180CaP,#180CaP-h表面 不同時間示意圖………………………………………64 圖3.19 細胞黏附於Polish, PolishCaP, PolishCaP-h 表面不同時間示意圖…………………………………65 圖3.20 細胞骨架黏附在試片上30分鐘型態示意圖…………66 圖3.21 細胞黏附面積示意圖…………………………………67 圖3.22 #180組中細胞受到不同轉速的施力下其細胞 位於內徑(0-2 mm)殘留數量示意圖……………………68 圖3.23 #180組中細胞受到不同轉速的施力下其細胞 位於內徑(2-4 mm)殘留數量示意圖……………………69 圖3.24 #180組中細胞受到不同轉速的施力下其細胞 位於內徑(4-6 mm) 殘留數量示意圖………………….70 圖3.25 Polish組中細胞受到不同轉速的施力下其細胞 位於內徑(0-2 mm)殘留數量示意圖……………………71 圖3.26 Polish組中細胞受到不同轉速的施力下其細胞 位於內徑(2-4 mm)殘留數量示意圖……………………72 圖3.27 Polish組中細胞受到不同轉速的施力下其細胞 位於內徑(4-6 mm)殘留數量示意圖……………………73 圖3.28 使用動態施力設備移除試片表面50%細胞 所需力量示意圖………………………………………74 圖3.39 經2000轉離心後細胞骨架位於內徑黏附形態………75 圖3.30 經2000轉離心後細胞骨架位於中外徑黏附形態……76 圖3.31 刮細胞量測力量示意圖……………………………….77

    [1] J. Black and G. Hasting, Editors, Handbook of biomaterial properties, Chapman & Hall, London, pp. 179–200. 1998.

    [2] P. Ducheyne, L. L. Hench, A. Kagan I I, M. Martens, A. Bursens, and J. C. Mulier, “Effect of hydroxyapatite impregnation on skeletal bonding of porous coated implants,” J Biomed Mater Res, Vol. 14, pp. 225-237, 1980.

    [3] J. A. Jansen, J. P. C. M. van der Waerden, and J. G. C. Wolke, “Histologic investigation of the biologic behavior of different hydroxyapatite plasma-sprayed coatings in rabbits,” J Biomed Mater Res, Vol. 27, pp. 603-610, 1993.

    [4] A. Hoshikawaa, N. Fukuia, A. Fukudaa, T. Sawamura, M. Hattorib, K. Nakamuraa, and H. Odaa, “Quantitative analysis of the resorption and osteoconduction process of a calcium phosphate cement and its mechanical effect for screw fixation,” Biomaterials,Vol. 24, pp. 4967-4975, 2003.

    [5] Kevin A. Thomas, John F. Kay, Stephen D. Cook, Michael Jarcho, “The effect of surface macrotexture and hydroxylapatite coating on the mechanical strengths and
    histologic profiles of titanium implant materials,” J Biomed Mater Res, Vol. 21, pp.1395-1414, 1987.

    [6] Olivier Mouzin, Kjeld Søballe, Joan E. Bechtold, “Loading Improves Anchorage of Hydroxyapatite Implants More than Titanium Implants,”J Biomed Mater Res(Appl Biomater), Vol.58, pp.61-68, 2001.

    [7] A. Moroni, S. Toksvig-Larsen, M.C. Maltarello, L. Orienti, S. Stea and S. Giannini, “ A comparison of hydroxyapatite-coated, and titanium-coated, and uncoated tapered external-fixation pins. An in vivo study in sheep,” J Bone Joint Surg Am, Vol. 80, pp.547-554, 1998.

    [8] K. Hayashi, T. Inadome, T. Mashima, and Y. Sugioka, “Comparison of bone-implant interface shear strength of solid hydroxyapatite and hydroxyapatite-coated titanium implants,” J Biomed Mater Res, Vol. 27, pp. 557-563, 1993.

    [9] J.E.G. Hulshoff, K. van Dijk, J.P.C.M. van der Waerden, J.G.C. Wolke, L.A. Ginsel, and J.A.Jansen, “Biological evaluation of the effect of magnetron sputtered Ca/P coatings on osteoblast-like cells in vitro,” J Biomed Mater Res, Vol. 29, pp. 967–975,1995.

    [10] J.G.C. Wolke, K. de Groot, and J.A. Jansen, “In vivo dissolution behavior of various RF magnetron sputtered Ca-P coatings,”J Biomed Mater Res, Vol.39, pp. 524–530,1998.

    [11] Her-Hsiung Huanga, Chun-Te Ho a, Tzu-Hsin Lee b, Tien-Ling Lee c, Ko-Kaung Liao d, and Fang-Lung Chenb, “Effect of surface roughness of ground titanium on initial cell adhesion,” Biomolecular Engineering, Vol. 21, pp. 93–97, 2004.

    [12] S. Lossdorfer, Z. Schwartz, L. Wang, C. H. Lohmann, J. D. Turner, M. Wieland, D. L. Cochran, and B. D. Boyan, “Microrough implant surface topographies increase
    osteogenesis by reducing osteoclast formation and activity,” J Biomed Mater Res, Vol.70A, pp. 361-369, 2004.

    [13] Raj K. Sirzha, Francirze Morris, Sukerz A. Shah, and Rocky S.Tuarz,“Surface composition of orthopaedicimplant metals regulates cells attachment, spreading, and cytoskeletal organization of primary human osteoblasts in vitro,” Clin Orthop Relat Res, Vol. 305, pp. 258-272, 1994.
    [14] Ken Webb, Vladimir Hlady, and Patrick A. Tresco, “Relationships among cell attachment spreading, cytoskeletal organization, and migration rate for
    anchorage-dependent cells on model surfaces,”J Biomed Mater Res, Vol. 49, pp.362–368, 2000.

    [15] Karine Anselmea, and Maxence Bigerelleb,“Modelling approach in cell/material interactions studies,”Biomaterials, Vol. 27, pp. 1187-1199, 2006.

    [16] I. Bracerasa, J.I. Onateb, L. Goikoetxeab, J.L. Vivienteb, J.I. Alavab, and M.A. de Maeztuc, “ Bone cell adhesion on ion implanted titanium alloys,” Surface & Coatings Technology, Vol. 196, pp. 321- 326, 2005.

    [17] GM Edelman,“ Cell adhesion molecules,” Science, Vol. 219, pp. 450-457, 1983.

    [18] Akiko Yamamoto, Shuzo Mishima, Norio Maruyama, and Masae Sumita, “A new technique for direct measurement of the shear force necessary to detach a cell from a material,” Biomaterials, Vol. 19, pp. 871-879,1998.

    [19] Sung, K. L., L. A. Sung, et al, “Determination of junction avidity of cytolytic T cell and target cell,” Science, Vol. 234(4782), pp. 1405-1408,1986.

    [20] S.R.K. Vedula, T.S. Lim, P.J.Kausalya, W. Hunziker, G. Rajagopal, and C.T. Lim, “Biophysical approaches for studying the integrity and function of tight junctions,”
    MCB, Vol. 2(3), pp. 105-123, 2005.

    [21] E. EVANS and A. LEUNG, “Adhesivity and Rigidity of Erythrocyte Membrane in Relation to Wheat Germ Agglutinin Binding,” J. Cell Biol., Vol. 98, pp. 1201-1208,1984.

    [22] Ting-Wu Qina, Zhi-Ming Yanga, Ze-Zhi Wub, Hui-Qi Xiea, Jian Qinb, and Shao-Xi Caib,“Adhesion strength of human tenocytes to extracellular matrix
    component-modified poly(DL-lactide-co-glycolide) substrates,” Biomaterials, Vol. 26, pp. 6635-6642, 2005.

    [23] Andres J. Garcia, Paul Ducheyne, and David Boettiger, “Quantification of cell adhesion using a spinning disc device and application to surface-reactive
    materials, ”Biornaterials, Vol. 18, pp. 1091-1098, 1997.

    [24] N. Mohandas, R. M. Hochmuth, and E. E. Spaeth, “Adhesion of Red Cells to Foreign Surfaces in the Presence of Flow,” J Biomed Mater Res, Vol. 8, pp. 119–136, 1974.

    [25] David R. McClay, Gary M. Wessel, and Richard B. Marchase, “Intercellular recognition: Quantitation of initial binding events,” Cell Biology, Vol. 78(8), pp.
    4975-4979, 1981.

    [26] Margaret M. Lotz, Carol A. Burdsal, Harold P. Erickson,and David R. McClay, “Cell Adhesion to Fibronectin and Tenascin: Quantitative Measurements of Initial Binding and Subsequent Strengthening Response,” Cell Biology, Vol. 109, pp. 1795-1805,1989.

    [27] Despina D. Deligianni,Nikoleta D. Katsala, Petros G. Koutsoukos, and Yiannis F.Missirlis, “Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength, ”Biomaterials, Vol. 22, pp. 87-96, 2001.

    [28]T. A. Horbett, J. J. Waldburger, B. D. Ratner, and A. S. Hoffman, “Cell adhesion to a series of hydrophilic-hydrophobic copolymers studied with a spinning disc apparatus, ” J Biomed Mater Res, Vol. 22, pp. 383–404, 1988.

    [29]C. C. Lee, C. Ching, W. Fong, and C. Su, “The Technique for Measurement of Cell Adhesion Force, ” J. Med. Biol. Eng, Vol. 24, pp. 51-56, 2004.

    [30]Y. Yang, K-.H. Kim, C.M. Agrawal and J.L. Ong, “Effect of post-deposition heating temperature and the presence of water vapor during heat treatment on crystallinity of calcium phosphate coatings,” Biomaterials, Vol. 24, pp. 5131–5137, 2003.

    [31] Y. Yang, K-.H. Kim, C.M. Agrawal and J.L. Ong, “Influence of post-deposition heating time and the presence of water vapor on sputter-coated calcium phosphate crystallinity,” J Dent Res, Vol.82, pp.833–837, 2003.

    [32]G. Daculsi, R.Z. LeGeros, J.P. LeGeros, and D. Mitre, “Lattice defects in calcium phosphate ceramics: high resolution TEM ultrastructural study,” J Appl Biomater, Vol.2, pp. 147–152, 1991.

    [33]van Dijk K, Schaeken HG, Wolke JGC, Maree CHM, Habraken FHPM, Verhoven J,and Jansen JA, “Influence of discharge power level on the properties of hydroxyapatite films deposited on Ti6Al4V with RF magnetron sputtering,” J Biomed Mater Res, Vol. 29, pp. 269–276, 1995.

    [34]van Dijk K, Schaeken HG, Wolke JGC, and Jansen JA,“ Influence of annealing temperature on RF magnetron sputtered calcium phosphate coatings,” Biomaterials, Vol. 17, pp. 405–410, 1996.

    [35]Y. Yang, J.D. Bumgardner, R. Cavin1, D.L. Carnes, and J.L Ong, “Osteoblast Precursor Cell Attachment on Heat-treated Calcium Phosphate Coatings,” J Dent Res, Vol. 82, pp. 449-453, 2003.

    [36]J. D. de Bruijn, J. E. Davies, J. Flach, K. de Groot, and C. A. van Blitterswijk, “Ultrastructure of the mineralized tissue/calciumphosphate interface in vitro,” in Tissue-Inducing Biomaterials, L. G. Cima and E. S. Ron (eds.), Materials Research Society, Vol. 252, pp. 63-70, 1992.

    [37]Okamoto K, Matsuura T, Hosokawa R, and Akagawa Y, “RGD peptides regulate the specific adhesion scheme of osteoblasts to hydroxyapatite but not to titanium,” J Dent Res, Vol. 77, pp. 481–487, 1998.

    [38] Jung Yul Lim, Joshua C. Hansen, Christopher A. Siedlecki, James Runt, and Henry J. Donahue, “Human foetal osteoblastic cell responseto polymer-demixed nanotopographic interfaces,” J. R. Soc. Interface, Vol. 2, pp. 97–108, 2005.

    [39]Teixeira, A. I., Abrams, G. A., Bertics, P. J., Murphy, C. J,and Nealey, P. F, “Epithelial contact guidance on welldefined micro- and nanostructured substrates,” J Cell Sci, Vol. 116, pp. 1881–1892, 2003.

    無法下載圖示 校內:2107-08-30公開
    校外:2107-08-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE