| 研究生: |
劉泓柜 Liou, Hong-Jyu |
|---|---|
| 論文名稱: |
甲烷催化裂解於傳統加熱與微波加熱環境中氫氣生成之建模與數值模擬 Modeling and Simulation of Methane Thermocatalytic Decomposition in Conventional Heating and Microwave Heating for Hydrogen Production |
| 指導教授: |
洪振益
Hung, Chen-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 數值方法 、產氫 、甲烷催化裂解 、傳統加熱 、微波加熱 、建模 |
| 外文關鍵詞: | Numerical simulations, Hydrogen production and generation, Thermocatalytic decomposition (TCD) of methane, Conventional heating, Microwave heating, Modeling |
| 相關次數: | 點閱:110 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究建立甲烷催化裂解產氫之動力模型,數值模擬可以清楚提供在觸媒床之詳細的反應現象。甲烷催化裂解為一個無CO與CO2生成之產氫方式。本研究區分為兩部分,一個為傳統加熱下之甲烷催化裂解,另一個為微波加熱下之甲烷催化裂解。第一部分的研究中分別建立傳統加熱下甲烷催化裂解產氫初期階段與穩定狀態兩種化學反應動力式模型,接著探討反應(壁面)溫度、觸媒質量、以及反應物流率對甲烷催化裂解之影響,從模擬預測得知在初期階段甲烷轉化率與反應溫度呈現一個線性比例。而在穩定狀態化學反應對於溫度較為敏感,而且流速對於產氫的反應也有一定的影響,相反地,相較此兩狀態下觸媒質量對甲烷催化裂解反應的影響相對的小,從觸媒床內溫度、化學反應速率以及氫濃度可以得知,化學反應為二維分布,溫度與濃度幾乎是一維分布。
在第二部分中,為了清楚了解微波輻射與甲烷催化裂解於活性碳觸媒床下之交互作用,以數值方式建構微波輔助加熱甲烷催化裂解之物理模型,微波輔助加熱下影響甲烷催化裂解有兩個重要參數,分別是提供之功率與體時空速(VHSV),從模擬結果得知提供更高的功率可以有效的促進甲烷催化裂解的表現,雖然增加體時空速甲烷轉化率會降低,但產氫量會增加。
Chemical kinetics of hydrogen production from the thermocatalytic decomposition (TCD) of methane is modeled in this study. Numerical simulations are carried out to figure out the detailed reaction phenomena in a catalyst bed. TCD of methane is a noticeable route to produce hydrogen without the formation of CO and CO2. This study is separated into two parts. One is TCD of methane with conventional heating, and the other is TCD of methane with microwave heating. At the first part, chemical kinetics of hydrogen production from the TCD of methane at the early reaction stage and the steady state with conventional heating is modeled. The effects of reaction (wall) temperature, catalyst mass, and reactant flow rate on the performance of methane TCD are evaluated. The predictions suggest that the CH4 conversion is linearly proportional to the reaction temperature at the early stage; the reaction is more sensitive to the reaction temperature at the steady state. Hydrogen formation from the reaction is also affected by the flow rate to a certain extent. In contrast, the performance of methane TCD is relatively insensitive to the catalyst mass, regardless of which reaction stage is. When the temperature distribution, reaction rate, and H2 concentration in the catalyst bed are examined, two-dimensional contours of reaction rate are exhibited, whereas the isothermal and concentration contours are almost one-dimensional.
At the second part, to recognize the characteristics of interaction of methane TCD and microwave irradiation in an activated carbon catalyst bed, the chemical reaction along with microwave-assisted heating is modeled and simulated numerically. The influences of two important factors, namely, the supplied power and volumetric hourly space velocity (VHSV), on the performance of methane TCD are investigated. The predictions suggest that a higher power supply can efficiently promote the performance of methane TCD. Increasing VHSV reduces the CH4 conversion, but more hydrogen is produced.
1. Abanades, S., Flamant, G., “Experimental study and modeling of a high-temperature solar chemical reactor for hydrogen production from methane cracking,” International Journal of Hydrogen Energy, Vol.32, pp.1508-1515, 2007.
2. Abbas, H.F., Daud, W.M.A.W., “Thermocatalytic decomposition of methane using palm shell based activated carbon: kinetic and deactivation studies,” Fuel Process Technology, Vol.90, pp.1167-1174, 2009.
3. Abbas, H.F., Daud, W.M.A.W., “Hydrogen production by thermocatalytic decomposition of methane using a fixed bed activated carbon in a pilot scale unit: apparent kinetic, deactivation and diffusional limitation studies,” International Journal of Hydrogen Energy, Vol.35, pp.12268-12276, 2010.
4. Abbas H.F., Daud, W.M.A.W., “Hydrogen production by methane decomposition: A review,” International Journal of Hydrogen Energy, Vol.35, pp.1160-1190, 2010.
5. Acierno, D., Barba, A.A., d’Amore, M., “Heat transfer phenomena during processing materials with microwave energy,” Heat and Mass Transfer, Vol.40, pp.413-420, 2004.
6. Ayappa, K.G., Davis, H.T., Davis, E.A., Gordon, J., “Two-dimensional finite element analysis of microwave heating,” AIChE Journal, Vol.38, pp.1577-1592, 1992.
7. Bai, Z., Chen, H., Li, B., Li, W., “Catalytic decomposition of methane over activated carbon,” Journal of Analytical and Applied Pyrolysis, Vol.73, pp.335-341, 2005.
8. Bai, Z., Chen, H., Li, W., Li, B., “Hydrogen production by methane decomposition over coal char” International Journal of Hydrogen Energy, Vol.31, pp.899-905, 2006.
9. Boyano, A., Blanco-Marigorta, A.M., Morosuk, T., Tsatsaronis, G., “Exergonevironmental analysis of a steam methane reforming process for hydrogen production,” Energy, Vol.36, pp.2202-2214, 2011.
10. Campanone, L.A., Zaritzky, N.E., “Mathematical analysis of microwave heating process,” Journal of Food Engineering, Vol.69, pp.359-368, 2005.
11. Cao, Z., Yoshikawa, N., Taniguchi, S., “Microwave heating behaviors of Si substrate materials in a single-mode cavity,” Materials Chemistry and Physics, Vol.124, pp.900-903, 2010
12. Chao, Y., Huang, C.T., Lee, H.M., Chang, M.B., “Hydrogen production via partial oxidation of methane with plasma-assisted catalysis,” International Journal of Hydrogen Energy, Vol.33, pp.664-671, 2008.
13. Chein, R.Y., Chen, Y.C., Chang, C.S., Chung, J.N., “Numerical modeling of hydrogen production from ammonia decomposition for fuel cell applications,”International Journal of Hydrogen Energy, Vol.35, pp.589-597, 2010.
14. Chen, W.H., Jheng, J.G., Yu, A.B., “Hydrogen generation from a catalytic water gas shift reaction under microwave irradiation,” International Journal of Hydrogen Energy, Vol.33, pp.4789-4797, 2008.
15. Comsol Multiphysics 4.0a User’s Guide and Modeling Guide, 2010.
16. Chen, W.H., Lin, B.J., “Effect of microwave double absorption on hydrogen generation from methanol steam reforming,” International Journal of Hydrogen Energy, Vol.35, pp.1987-1997, 2010.
17. Chen, W.H., Chiu, T.W., Hung, C.I., “Enhancement effect of heat recovery on hydrogen production from catalytic partial oxidation of methane,” International Journal of Hydrogen Energy, Vol.35, pp.7427-7440, 2010.
18. Chen, W.H., Chiu, T.W., Hung, C.I., “Hydrogen production from methane under the interaction of catalytic partial oxidation, water gas shift reaction and heat recovery,” International Journal of Hydrogen Energy, Vol.35, pp.12808-12820, 2010.
19. Chen, W.H., Cheng, T.C., Hung, C.I., “Modeling and simulation of microwave double absorption on methanol steam reforming for hydrogen production,” International Journal of Hydrogen Energy, Vol.36, pp.333-344, 2011.
20. Chen, W.H., Cheng, T.C., Hung, C.I., “Numerical predictions on thermal characteristic and performance of methanol steam reforming with microwave-assisted heating,” International Journal of Hydrogen Energy, Vol.36, pp.8279-8291, 2011.
21. Chen, W.H., Cheng, Y.C., Hung, C.I., “Transient reaction and exergy analysis of catalytic partial oxidation of methane in a Swiss-roll reactor for hydrogen production,” International Journal of Hydrogen Energy, Vol.37, pp.6608-6619, 2012.
22. Cherbanski, R.Y., Molga, E., “Intensification of desorption processes by use of microwaves-An overview of possible applications and industrial perspectives,” Chemical Engineering and Processing, Vol.48, pp.48-58, 2009.
23. Cormier, J.M., Rusu, I., “Syngas production via methane steam reforming with oxygen: plasma reactors versus chemical reactors,” Journal of Physics D: Applied physics, Vol.34, pp.2798-2803, 2001.
24. Domínguez, A., Menéndez, J.A., Inguanzo, M., Pis, J.J., “Investigations into the characteristics of oils produced from microwave pyrolysis of sewage sludge,” Fuel Processing Technology, Vol.86, pp. 1007-1020, 2005.
25. Domínguez, A., Fidalgo, B., Fernández, Y., Pis, J.J., Menéndez, J.A., “Microwave-assisted catalytic decomposition of methane over activated carbon for CO2-free hydrogen production,” International Journal of Hydrogen Energy, Vol.32, pp. 4792-4799, 2007.
26. Dufour, A., Celzard, A, Ouartassi, B, Broust, F, Fierro, V, Zoulalian, A., “Effect of micropores diffusion on kinetics of CH4 decomposition over a wood-derived carbon catalyst,” Applied Catal A 2009;360:120-5.
27. Dufour, J., Serrano, D.P., Gálvez, J.L., Moreno, J., García, C., “Life cycle assessment of processes for hydrogen production. Environmental feasibility and reduction of greenhouse gases emissions,” International Journal of Hydrogen Energy, Vol.34, pp.1370-1376, 2009.
28. Dunker, A.M., Ortmann, J.P., “Kinetic modeling of hydrogen production by thermal decomposition of methane,” International Journal of Hydrogen Energy, Vol.31, pp.1989-1998, 2006.
29. Ermakova, M.A., Ermakov, D.Y., Kuvshinov, G.G., Plyasova, L.M., “New Nickel Catalysts for the Formation of Filamentous Carbon in the Reaction of Methane Decomposition,” Journal of Catalysis, Vol. 187, pp. 77-84, 1999.
30. Faungnawakij, K., Kikuchi, R., Eguchi, K., “Thermodynamic evaluation of methanol steam reforming for hydrogen production,” Journal of Power Sources, Vol.161, pp.87-94, 2006.
31. Geedipalli, S.S.R., Rakesh, V.R., Datta, A.K., “Modeling the heating uniformity contributed by a rotating turntable in microwave ovens,” Journal of Food Engineering, Vol.82, pp.359-368, 2007.
32. Geedipalli, S.S.R., Datta, A.K., Rakesh, V.R., “Heat transfer in a combination microwave–jet impingement oven,” Food and Bioproducts Processing, Vol.86, pp.53- 63, 2007.
33. Guil-Lopez, R., Botas, J.A., Fierro, J.L.G., Serrano, D.P., “Comparison of metal and carbon catalysts for hydrogen production by methane decomposition,” Applied Catalysis A: General, Vol.396, pp.40-51, 2011.
34. Haque, K.E., “Microwave energy for mineral treatment processes-a brief review.,” International Journal of Mineral Processing, Vol.57, pp.1-24, 1999.
35. Hossan, M.R., Byun, D., Dutta, P., “Analysis of microwave heating for cylindrical shaped objects,” International Journal of Heat and Mass Transfer, Vol.53, pp.5129-5138, 2010.
36. Homayonifar, P., Saboohi, Y., Firoozabadi, B., “Numerical simulation of nano-carbon deposition in the thermal decomposition of methane,” International Journal of Hydrogen Energy, Vol.33, pp.7027-7038, 2008
37. Jones, D.A, Lelyveld, T.P., Mavrofidis S.D., Kingman, S.W., Miles, N.J., “Microwave heating applications in environmental engineering – a review,” Resources Conservation and Recycling, Vol.34, pp.75-90, 2002.
38. Jung, J.U., Nam, W., Yoon, K.J., Han, G.Y., “Hydrogen production by catalytic decomposition of methane over carbon catalysts in a fluidized bed,” Korean Journal Chemical Engineering, Vol.24, pp.674-678, 2007.
39. Kim, M.H., Lee, E.K., Jun, J.H., Kong S.J., Han, G.Y., Lee, B.K., Lee, T.J., Yoon, K.J., “Hydrogen production by catalytic decomposition of methane over activated carbon: kinetic study,” International Journal of Hydrogen Energy, Vol.29, pp.187-193, 2004.
40. Lee, K.K., Han, G.Y., Yoon, K.J., Lee, B.K., “Thermocatalytic hydrogen production from the methane in a fluidized bed with activated carbon catalyst,” Catalysis Today, Vol.93-95, pp.81-86, 2004.
41. Lee, S.Y., Ryu, B.H., Han, G.Y., Lee, T.J., Yoon, K.J., “Catalytic characteristics of specialty carbon blacks in decomposition of methane for hydrogen production,” Carbon, Vol.46, pp.1978-1986, 2008.
42. Maag, G., Zanganeh, G., Steinfeld, A., “Solar thermal cracking of methane in a particle-flow reactor for the co-production of hydrogen and carbon,” International Journal of Hydrogen Energy, Vol.34, pp.7676-7685, 2009.
43. Miller, J.W., Shah, P.N., Yaw, C.L., “Correlation constants for chemical compounds,” The Chemical Engineering Journal, Vol.83, 153-180, 1976
44. Momen, G., Jafari, R., Hassouni, K., “On the effect of process temperature on the performance of activated carbon bed hydrogen storage tank,” International Journal Thermal Sciences, Vol.49, pp.1468-1476, 2010
45. Muradov, N., “Hydrogen via methane decomposition: an application for decarbonization of fossil fuels,” International Journal of Hydrogen Energy, Vol.26, pp.1165-1175, 2001.
46. Muradov, N., Smith, F., T-Raissi, A., “Catalytic activity of carbons for methane decomposition reaction,” Catalysis Today, Vol.102-103, pp.225-233, 2005.
47. Muradov, N., Chen, Z., “Smith F. Fossil hydrogen with reduced CO2 emission: Modeling thermocatalytic decomposition of methane in a fluidized bed of carbon particles,” International Journal of Hydrogen Energy, Vol.30, pp.1149-1158, 2005.
48. Muradov, N., Smith, F., Bockerman, G., Scammon K. “Thermocatalytic decomposition of natural gas over plasma-generated carbon aerosols for sustainable production of hydrogen and carbon,” Applied Catalysis A: General, Vol.365, pp.292-300, 2009.
49. Perry, W.L., Datye, A.K., Prinja, A.K., “Kinetic study of the thermal decomposition of methane using carbonaceous catalysts,” AIChE Journal, Vol.48, pp.820-831, 2002.
50. Pinilla, J.L., Suelves, I., Lázaro, M.J., Moliner, R., “Microwave heating of endothermic catalytic reactions: Reforming of methanol,” Chemical Engineering Journal, Vol.138, pp.301-306, 2008.
51. Poling, B.E., Prausnitz, J.M., O'Connell, J.P., The properties of gases and liquids fifth edition, McGraw-Hill, 2001.
52. Polshettiwar, V., Varma, R.S., “Microwave-assisted organic synthesis and transformations using benign reaction media,” Accounts of Chemical Research, Vol.41, pp.629-639, 2008.
53. Plaza-González, P., Monzó-Cabrera, J., Catalá-Civera, J., Sánchez-Hernández, D., “New approach for the prediction of the electric field distribution in multimode microwave-heating applicators with mode stirrers,” IEEE Transactions on magnetics, Vol.40, pp.1672-1678, 2004.
54. Rattanadecho, P., “The simulation of microwave heating of wood using a rectangular wave guide: Influence of frequency and sample size,” Chemical Engineering Science, Vol.61, pp.4798-4811, 2006.
55. Samanta, S.K., Basak, T., “Efficient microwave processing of oil-water emulsion cylinders with lateral and radial irradiations,” Food Research International, Vol.42 , pp.1337-1350, 2009.
56. Saltiel, C., Datta, A.K., “Heat and mass transfer in microwave processing,” Advanted in Heat Transfer, Vol.33, pp.1-94, 1999.
57. Sato, T., Kurosawa, S., Richard, L., “Water gas shift reaction kinetics under noncatalytic conditions in supercritical water,” The Journal of Supercritical Fluids, Vol.29, pp.113-119, 2004.
58. Takenaka, S., Kobayashi, S., Hitoshi, O., Otsuka, K., “Ni/SiO2 catalyst effective for methane decomposition into hydrogen and carbon nanofiber,” Journal of Catalysis, Vol.217, pp.79-87, 2003.
59. Tarchini, R., Galgano, A., Blasi, C.D., “Modeling the influences of pressure and velocity variations on the microwave-induced pyrolysis of wood,” AIChE Journal, Vol.58, pp.610-624, 2012.
60. Venugopal, A., Kumar, S.N., Ashok, J., Prasad, D.H., Kumari, V.D., Prasad, K.B.S., Subrahmanyam, M., “Hydrogen production by catalytic decomposition of methane over Ni/SiO2,” International Journal of Hydrogen Energy, Vol.32, pp.1782-1788, 2007.
61. Wan, Y., Chen, P., Zhang, B., Yang, C., Liu, X., Ruan, R., “Microwave-assisted pyrolysis of biomass: Catalysts to improve product selectivity,” Journal of Analytical and Applied Pyrolysis,Vol.86, pp.161-167, 2009.
62. Yang, H.W., Gunasekaran, S., “Comparison of temperature distribution in model food cylinders based on Maxwell’s equations and Lambert’s law during pulsed microwave heating,” Journal of Food Engineering, Vol.64, pp.445-453, 2004.
63. Yeo, Y.K., Kim, H.Y., Kim, I.W., Moon, I., Chung, Y., Levdansky, V.V., “Analysis of catalytic reaction systems under microwave to save energy,” Korean Journal Chemical Engineering,, Vol.20, pp.1-7, 2003.
64. Zhu, J., Kuznetsov, A.V., Sandeep, K.P., “Mathematical modeling of continuous flow microwave heating of liquids (effects of dielectric properties and design parameters),” International Journal of Thermal Sciences, Vol.46, pp.328-341, 2007.
65. 曲新生,陳發林, “氫能技術,” 五南圖書公司,2006年4月。
66. 石詔明,“電磁學,” 全威圖書,2007年8月。
67. 毛宗強,“氫能-21世紀的綠色能源,”新文京開發出版股份有限公司,2008年3月。
68. 林天送, “巧克力糖怎麼熔糊了 微波爐的發明,”行政院國家科學委員會,http://web1.nsc.gov.tw/mp.aspx,2009年3月。
69. 李長綱, “電磁學與電磁波的理論及應用=Theory and application of electromagnetic fields and waves,”鼎茂圖書,2009年3月。
70. 程雋, “電磁波理論,” 文笙圖書,2009年7月。
71. 陳維新, “生質物與生質能,” 高立圖書有限公司,2010年7月。
72. 陳維新, “能源概論,” 高立圖書有限公司,2011年1月。
73. 鄭宗杰,洪振益,“甲醇蒸氣重組於微波雙重吸收環境中氫氣生成之建模與模擬,” 國立成功大學機械系工程學系碩士論文(2011)。
74. 陳維新, “空氣污染與控制,” 高立圖書有限公司,2012年1月。
校內:2018-07-19公開