| 研究生: |
程彥齊 Cheng, Yen-Chi |
|---|---|
| 論文名稱: |
氮摻雜提升氧化銦鎵薄膜電晶體穩定性及效能之研究 Investigation of In-situ Nitrogen Doping for Improving Stability and Performance of InGaO TFTs |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 氧化銦鎵 、薄膜電晶體 、光電晶體體 、氮摻雜 、氧空缺 、雙疊層主動層 、離子化 、紫外光 、感測器 、穩定性 、可靠度 |
| 外文關鍵詞: | InGaO, TFT, indium-gallium oxide, thin-film transistor, phototransistor, nitrogen, doping, oxygen vacancy, DSCL, double-stacked channel layer, ionization, UV, detector, stability, reliability |
| 相關次數: | 點閱:138 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的發展,薄膜電晶體(TFT)已廣泛使用在各種應用中,特別是平面顯示器。因此不論是發展技術相當成熟的主動矩陣式液晶顯示器(AMLCD),或是近年來非常熱門的主動矩陣式有機發光二極體顯示器(AMOLED),都利用薄膜電晶體陣列進行像素的開關,以減少畫面延遲的現象。由於透明導電氧化物(TCO)載子移動率高、能隙大、製程溫度低,且大面積成膜均勻度良好,適合作為薄膜電晶體的主動層材料。此氧化物不僅能提高薄膜電晶體的驅動電流,其對於可見光的透光性良好,亦能增加顯示器的開口率。透明導電氧化物能夠取代過去以矽為主的材料,以得到畫質更清晰且畫面切換速度更快的影像。透明導電氧化物獨特的材料特性,也開啟了光電晶體、可饒式電子元件和氣體感測器等多項新領域的研究。
然而,透明導電氧化物中的氧空缺(Oxygen vacancy),容易受偏壓和光照影響,使薄膜電晶體在操作的過程中逐漸退化。其中氧氣的吸附與脫附,以及氧空缺離子化,都大大降低元件的可靠度。故本研究以氧化銦鎵(InGaO)作為薄膜電晶體的主動層材料,在濺鍍氧化銦鎵薄膜的過程中,進行微量氮摻雜。經由氮摻雜填補過量氧空缺,並與周圍的金屬原子形成更強的鍵結,以提升薄膜穩定度,進而改善偏壓與光照所導致的元件劣化,提高元件在長時間操作下的穩定性。
為了製做高效能的薄膜電晶體,我們將氮摻雜技術運用在雙疊層主動層(DSCL)的元件結構中。利用氮摻雜調變氧化物能隙,將具有不同能隙及氧空缺含量的氧化銦鎵薄膜進行堆疊作為元件主動層,製做高載子移動率(µFE = 25 cm2/Vs)且高開關電流比(ION / IOFF > 108),開關特性優異的薄膜電晶體。
此外,我們也將氮摻雜技術應用在紫外光的偵測上,製做光響應高且不受可見光干擾的紫外光感測器(UV detector)。透過氮摻雜抑制陷阱能態到導帶的電子躍遷,改善可見光導致氧空缺離子化所產生的光電流。同時藉由氮摻雜形成局部能帶尾態,減少等效能隙,增強價帶與導帶間由紫外光照射引起的電子躍遷,得到高紫外光響應(Responsivity = 17.4 A/W)以及高拒斥比(Rejection ratio = 1.0 × 106)的氧化銦鎵紫外光感測器。本研究詳細討論氮摻雜對於氧化銦鎵薄膜電晶體作為開關元件和紫外光感測器的影響,並探討氧化銦鎵薄膜電晶體相關電性與可靠度等問題。
With the development of technology, thin-film transistors (TFTs) have been widely used for various applications, especially for switching devices in flat panel displays (FPDs) including active-matrix liquid-crystal displays (AMLCD) and active-matrix organic light-emitting diode displays (AMOLED). TFT arrays are utilized to switch the pixels in FPDs to reduce the image delay. Due to the advantages of high carrier mobility, wide bandgap, low-temperature processability, and good uniformity over a large area, transparent conducting oxides (TCOs) have become the mainstream active layer materials for TFTs. TCOs not only can increase the driving current of the TFTs but also exhibit good transmittance to visible light, increasing the aperture ratio. TCOs offer good alternatives to conventional silicon-based materials to achieve higher resolution and frame rate. Also, the unique material characteristics of TCOs have enabled the creation of new research in the areas of phototransistors, flexible electronics, and gas sensors.
However, TCOs are susceptible to excessive oxygen vacancies, which will cause device instability during operation. Particularly, the adsorption and desorption of oxygen and the ionization of oxygen vacancies tend to result in reliability issues under bias and light stress. In this thesis, indium-gallium oxide (InGaO) was used for the active layer material, and a small amount of nitrogen was introduced during the deposition of InGaO thin-films. The in-situ nitrogen doping (N-doping) is able to effectively passivate the excessive oxygen vacancies and form stronger bonds with surrounding metal atoms. This approach can enhance the stability of the InGaO thin-films and thereby improve the device degradation for long-term operation.
To manufacture high-performance TFTs, the in-situ N-doping technique was integrated with the structure of the double-stacked channel layer (DSCL). We exploited N-doping to modulate the bandgap of the InGaO, and then stacked the IGO thin-films of different bandgaps and the amount of oxygen vacancies as the active layer for superior switching characteristics, including high carrier mobility (µFE = 25 cm2/Vs) and on-off current ratio (ION / IOFF > 108).
In addition, the in-situ N-doping technique was applied for fabricating highly responsive and visible-blind UV detectors. Through the suppression of the electron transition from subgap states, the N-doping restrained the photocurrent from the visible light-induced ionization of the oxygen vacancies. Moreover, due to the formation of localized tail states, the effective bandgap of the InGaO decreased, which enhanced the UV-induced band-to-band transition. High-performance IGO phototransistors with high UV responsivity (17.4 A/W) and rejection ratio (1.0 × 106) were therefore attained. In this thesis, the effects of N-doping for switching devices and UV detectors were demonstrated. The relevant electrical characteristics and reliability issues of InGaO TFTs were discussed as well.
[1] S. H. Park, J. B. Park, and P. K. Song, “Characteristics of Al-doped, Ga-doped and In-doped zinc-oxide films as transparent conducting electrodes in organic light-emitting diodes,” Applied Physics, vol. 10, no. 3, 2010.
[2] J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy, vol. 77, no. 6, pp. 917–930, Dec. 2004.
[3] S. Faÿ, J. Steinhauser, N. Oliveira, E. Vallat-Sauvain, and C. Ballif, “Opto-electronic properties of rough LP-CVD ZnO:B for use as TCO in thin-film silicon solar cells,” Thin Solid Films, vol. 515, no. 24 SPEC. ISS., pp. 8558–8561, Oct. 2007.
[4] A. Pimentel, E. Fortunato, A. Gonçalves, A. Marques, H. Águas, L. Pereira, I. Ferreira, and R. Martins, “Polycrystalline intrinsic zinc oxide to be used in transparent electronic devices,” Thin Solid Films, 2005, vol. 487, no. 1–2, pp. 212–215.
[5] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, no. 7016, pp. 488–492, Nov. 2004.
[6] M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J. S. Park, J. K. Jeong, Y. G. Mo, and H. D. Kim, “High mobility bottom gate InGaZnO thin film transistors with Si Ox etch stopper,” Appl. Phys. Lett., vol. 90, no. 21, 2007.
[7] T. H. Chang, C. J. Chiu, W. Y. Weng, S. J. Chang, T. Y. Tsai, and Z. D. Huang, “High responsivity of amorphous indium gallium zinc oxide phototransistor with Ta 2 O 5 gate dielectric,” Appl. Phys. Lett., vol. 101, no. 26, p. 261112, 2012.
[8] T. Chang, S. Chang, C. J. Chiu, C. Wei, Y. Juan, and W. Weng, “Bandgap-Engineered in Indium – Gallium – Oxide Ultraviolet Phototransistors,” IEEE Photonics Technol. Lett., vol. 27, no. 8, pp. 915–918, 2015.
[9] T. Kamiya and H. Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors,” NPG Asia Mater., vol. 2, no. 1, pp. 15–22, 2010.
[10] K. Ebata, S. Tomai, Y. Tsuruma, T. Iitsuka, S. Matsuzaki, and K. Yano, “High-mobility thin-film transistors with polycrystalline In-Ga-O channel fabricated by DC magnetron sputtering,” Appl. Phys. Express, vol. 5, no. 1, Jan. 2012.
[11] D. C. Paine, B. Yaglioglu, Z. Beiley, and S. Lee, “Amorphous IZO-based transparent thin film transistors,” Thin Solid Films, vol. 516, no. 17, pp. 5894–5898, Jul. 2008.
[12] J. H. Lee, J. H. Kim, and M. K. Han, “A new a-Si:H TFT pixel circuit compensating the threshold voltage shift of a-Si:H TFT and OLED for active matrix OLED,” IEEE Electron Device Lett., vol. 26, no. 12, pp. 897–899, Dec. 2005.
[13] P. T. Liu, C. H. Chang, and C. J. Chang, “Suppression of photo-bias induced instability for amorphous indium tungsten oxide thin film transistors with bi-layer structure,” Appl. Phys. Lett., vol. 108, no. 26, 2016.
[14] T. Kim, B. Jang, S. Lee, W. Lee, and J. Jang, “Improved Negative Bias Stress Stability of Sol-Gel-Processed Mg-Doped In2O3Thin Film Transistors,” IEEE Electron Device Lett., vol. 39, no. 12, pp. 1872–1875, 2018.
[15] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO Nanowire UV Photodetectors with High Internal Gain,” Nano Lett., vol. 7, no. 4, pp. 1003–1009, Apr. 2007.
[16] E. Monroy, F. Calle, J. L. Pau, E. Muñoz, F. Omnès, B. Beaumont, and P. Gibart, “AlGaN-based UV photodetectors,” J. Cryst. Growth, vol. 230, no. 3–4, pp. 537–543, 2001.
[17] Q. Zhang, J. Jie, S. Diao, Z. Shao, Q. Zhang, L. Wang, W. Deng, W. Hu, H. Xia, X. Yuan, and S.-T. Lee, “Solution-Processed Graphene Quantum Dot Deep-UV Photodetectors,” ACS Nano, vol. 9, no. 2, pp. 1561–1570, Feb. 2015.
[18] M. G. Yun, Y. K. Kim, C. H. Ahn, S. W. Cho, W. J. Kang, H. K. Cho, and Y.-H. Kim, “Low voltage-driven oxide phototransistors with fast recovery, high signal-to-noise ratio, and high responsivity fabricated via a simple defect-generating process OPEN,” Nat. Publ. Gr., 2016.
[1] J. Raja, K. Jang, N. Balaji, W. Choi, T. Thuy Trinh, and J. Yi, “Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors,” Appl. Phys. Lett., vol. 102, no. 8, pp. 1–5, 2013.
[2] H. Xie, G. Liu, L. Zhang, Y. Zhou, and C. Dong, “Amorphous Oxide Thin Film Transistors with Nitrogen-Doped Hetero-Structure Channel Layers,” Appl. Sci., vol. 7, no. 12, p. 1099, 2017.
[3] X.-A. Zhang, J.-W. Zhang, W.-F. Zhang, D. Wang, Z. Bi, X.-M. Bian, and X. Hou, “Enhancement-mode thin film transistor with nitrogen-doped ZnO channel layer deposited by laser molecular beam epitaxy,” Thin Solid Films, vol. 516, no. 10, pp. 3305–3308, Mar. 2008.
[4] S. J. Lim, S. Kwon, H. Kim, and J.-S. Park, “High performance thin film transistor with low temperature atomic layer deposition nitrogen-doped ZnO,” Appl. Phys. Lett., vol. 91, no. 18, p. 183517, Oct. 2007.
[5] J. Sun, D. A. Mourey, D. Zhao, S. K. Park, S. F. Nelson, D. H. Levy, D. Freeman, P. Cowdery-Corvan, L. Tutt, and T. N. Jackson, “ZnO Thin-Film Transistor Ring Oscillators with 31-ns Propagation Delay,” IEEE Electron Device Lett., vol. 29, no. 7, pp. 721–723, Jul. 2008.
[6] P.-T. Liu, Y.-T. Chou, L.-F. Teng, F.-H. Li, and H.-P. Shieh, “Nitrogenated amorphous InGaZnO thin film transistor,” Appl. Phys. Lett., vol. 98, no. 5, p. 052102, Jan. 2011.
[7] J. Yang, Y. Han, R. Fu, and Q. Zhang, “Effects of Nitrogen Doping on Performance of Amorphous SnSiO Thin Film Transistor,” J. Disp. Technol., vol. 12, no. 12, pp. 1560–1564, 2016.
[8] C. E. Kim and I. Yun, “Effects of nitrogen doping on device characteristics of InSnO thin film transistor,” Appl. Phys. Lett., vol. 100, no. 1, pp. 3–6, 2012.
[9] Y. S. Rim, H. W. Choi, K. H. Kim, and H. J. Kim, “Effects of structural modification via high-pressure annealing on solution-processed InGaO films and thin-film transistors,” J. Phys. D. Appl. Phys., vol. 49, no. 7, 2016.
[10] Y. C. Chen, T. C. Chang, H. W. Li, S. C. Chen, W. F. Chung, Y. H. Chen, Y. H. Tai, T. Y. Tseng, and F. S. Yeh, “Surface states related the bias stability of amorphous In-Ga-Zn-O thin film transistors under different ambient gasses,” Thin Solid Films, vol. 520, no. 5, pp. 1432–1436, 2011.
[11] A. Abliz, Q. Gao, D. Wan, X. Liu, L. Xu, C. Liu, C. Jiang, X. Li, H. Chen, T. Guo, J. Li, and L. Liao, “Effects of Nitrogen and Hydrogen Codoping on the Electrical Performance and Reliability of InGaZnO Thin-Film Transistors,” ACS Appl. Mater. Interfaces, vol. 9, no. 12, pp. 10798–10804, 2017.
[12] H. Xie, Q. Wu, L. Xu, L. Zhang, G. Liu, and C. Dong, “Nitrogen-doped amorphous oxide semiconductor thin film transistors with double-stacked channel layers,” Appl. Surf. Sci., vol. 387, pp. 237–243, 2016.
[13] J. K. Jeong, J. H. Jeong, H. W. Yang, J.-S. Park, Y.-G. Mo, and H. D. Kim, “High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel,” Appl. Phys. Lett., vol. 91, no. 11, p. 113505, Sep. 2007.
[14] R. L. Hoffman, “ZnO-channel thin-film transistors: Channel mobility,” J. Appl. Phys., vol. 95, no. 10, pp. 5813–5819, May 2004.
[15] T. Kamiya, K. Nomura, and H. Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors,” Sci. Technol. Adv. Mater., vol. 11, no. 4, p. 044305, Feb. 2010.
[16] J. J. Siddiqui, J. D. Phillips, K. Leedy, and B. Bayraktaroglu, “Bias-Temperature-Stress Characteristics of ZnO/HfO2 Thin-Film Transistors,” IEEE Trans. Electron Devices, vol. 59, no. 5, pp. 1488–1493, May 2012.
[17] R. Zhan, C. Dong, P.-T. Liu, and H.-P. D. Shieh, “Influence of channel layer and passivation layer on the stability of amorphous InGaZnO thin film transistors,” Microelectron. Reliab., vol. 53, no. 12, pp. 1879–1885, Dec. 2013.
[18] M. C. Chen, T. C. Chang, S. Y. Huang, K. C. Chang, H. W. Li, S. C. Chen, J. Lu, and Y. Shi, “A low-temperature method for improving the performance of sputter-deposited ZnO thin-film transistors with supercritical fluid,” Appl. Phys. Lett., vol. 94, no. 16, 2009.
[19] L. Xu, Q. Chen, L. Liao, X. Liu, T. C. Chang, K. C. Chang, T. M. Tsai, C. Jiang, J. Wang, and J. Li, “Rational Hydrogenation for Enhanced Mobility and High Reliability on ZnO-based Thin Film Transistors: From Simulation to Experiment,” 2016.
[20] X. Huang, C. Wu, H. Lu, F. Ren, D. Chen, R. Zhang, and Y. Zheng, “Enhanced bias stress stability of a-InGaZnO thin film transistors by inserting an ultra-thin interfacial InGaZnO:N layer,” Appl. Phys. Lett., vol. 102, no. 19, p. 193505, May 2013.
[21] P.-T. Liu, C.-H. Chang, C.-S. Fuh, Y.-T. Liao, and S. M. Sze, “Effects of Nitrogen on Amorphous Nitrogenated InGaZnO (a-IGZO:N) Thin Film Transistors,” Oct. 2016.
[22] T. Chang, S. Chang, C. J. Chiu, C. Wei, Y. Juan, and W. Weng, “Bandgap-Engineered in Indium – Gallium – Oxide Ultraviolet Phototransistors,” IEEE Photonics Technol. Lett., vol. 27, no. 8, pp. 915–918, 2015.
[23] X. Du, B. T. Flynn, J. R. Motley, W. F. Stickle, H. Bluhm, and G. S. Herman, “Role of self-assembled monolayers on improved electrical stability of amorphous In-Ga-Zn-O thin-film transistors,” ECS J. Solid State Sci. Technol., vol. 3, no. 9, pp. Q3045–Q3049, 2014.
[24] J. Raja, K. Jang, N. Balaji, S. Q. Hussain, S. Velumani, S. Chatterjee, T. Kim, and J. Yi, “Aging effects on the stability of nitrogen-doped and un-doped InGaZnO thin-film transistors,” 2015.
[25] H. Pu, Q. Zhou, L. Yue, and Q. Zhang, “Investigation of oxygen plasma treatment on the device performance of solution-processed a-IGZO thin film transistors,” Appl. Surf. Sci., vol. 283, pp. 722–726, Oct. 2013.
[26] H. Xie, Q. Wu, L. Xu, J. Xu, L. Zhang, G. Liu, and C. Dong, “Amorphous Oxide Thin Film Transistors with Nitrogen-doped Active Layers,” SID Symp. Dig. Tech. Pap., vol. 47, no. 1, pp. 1033–1036, May 2016.
[27] H. L. Chen, T. C. Chang, T. F. Young, T. M. Tsai, K. C. Chang, R. Zhang, S. Y. Huang, K. H. Chen, J. C. Lou, M. C. Chen, C. C. Shih, S. Y. Huang, and J. H. Chen, “Ultra-violet light enhanced super critical fluid treatment in In-Ga-Zn-O thin film transistor,” Appl. Phys. Lett., vol. 104, no. 24, pp. 1–5, 2014.
[28] G. H. Kim, H. S. Kim, H. S. Shin, B. Du Ahn, K. H. Kim, and H. J. Kim, “Inkjet-printed InGaZnO thin film transistor,” Thin Solid Films, vol. 517, no. 14, pp. 4007–4010, May 2009.
[29] T. C. Chen, T. C. Chang, T. Y. Hsieh, W. S. Lu, F. Y. Jian, C. T. Tsai, S. Y. Huang, and C. S. Lin, “Investigating the degradation behavior caused by charge trapping effect under DC and AC gate-bias stress for InGaZnO thin film transistor,” Appl. Phys. Lett., vol. 99, no. 2, pp. 2009–2012, 2011.
[30] X. Zhou, Y. Shao, L. Zhang, H. Lu, H. He, D. Han, Y. Wang, and S. Zhang, “Oxygen Interstitial Creation in a-IGZO Thin-Film Transistors Under Positive Gate-Bias Stress,” IEEE Electron Device Lett., vol. 38, no. 9, pp. 1252–1255, Sep. 2017.
[31] J. G. Um, M. Mativenga, and J. Jang, “Mechanism of positive bias stress-assisted recovery in amorphous-indium-gallium-zinc-oxide thin-film transistors from negative bias under illumination stress,” Appl. Phys. Lett., vol. 103, no. 3, p. 033501, Jul. 2013.
[1] T. Kamiya and H. Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors,” NPG Asia Mater., vol. 2, no. 1, pp. 15–22, 2010.
[2] W.-S. Kim, Y.-H. Lee, Y.-J. Cho, B.-K. Kim, K. T. Park, and O. Kim, “Effect of Wavelength and Intensity of Light on a-InGaZnO TFTs under Negative Bias Illumination Stress,” ECS J. Solid State Sci. Technol., vol. 6, no. 1, pp. Q6–Q9, 2017.
[3] T. Mudgal, N. Walsh, R. G. Manley, and K. D. Hirschman, “Impact of Annealing on Contact Formation and Stability of IGZO TFTs,” ECS J. Solid State Sci. Technol., vol. 3, no. 9, pp. Q3032–Q3034, Jul. 2014.
[4] Y.-C. Cheng, S.-P. Chang, S.-J. Chang, T.-H. Cheng, Y.-L. Tsai, Y.-Z. Chiou, and L. Lu, “Stability Improvement of Nitrogen Doping on IGO TFTs under Positive Gate Bias Stress and Hysteresis Test,” ECS J. Solid State Sci. Technol., vol. 8, no. 7, pp. Q3034–Q3040, 2019.
[5] J. Yang, Y. Han, R. Fu, and Q. Zhang, “Effects of Nitrogen Doping on Performance of Amorphous SnSiO Thin Film Transistor,” J. Disp. Technol., vol. 12, no. 12, pp. 1560–1564, 2016.
[6] J. Raja, K. Jang, N. Balaji, W. Choi, T. Thuy Trinh, and J. Yi, “Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors,” Appl. Phys. Lett., vol. 102, no. 8, pp. 1–5, 2013.
[7] H. Xie, J. Xu, G. Liu, L. Zhang, and C. Dong, “Development and analysis of nitrogen-doped amorphous InGaZnO thin film transistors,” Mater. Sci. Semicond. Process., vol. 64, no. October 2016, pp. 1–5, 2017.
[8] J.-F. Chien, C.-H. Chen, J.-J. Shyue, and M.-J. Chen, “Local Electronic Structures and Electrical Characteristics of Well-Controlled Nitrogen-Doped ZnO Thin Films Prepared by Remote Plasma In situ Atomic Layer Doping,” ACS Appl. Mater. Interfaces, vol. 4, no. 7, pp. 3471–3475, Jul. 2012.
[9] X. Huang, C. Wu, H. Lu, F. Ren, D. Chen, R. Zhang, and Y. Zheng, “Enhanced bias stress stability of a-InGaZnO thin film transistors by inserting an ultra-thin interfacial InGaZnO:N layer,” Appl. Phys. Lett, vol. 102, p. 193505, 2013.
[10] K. R. Reyes-Gil, D. Raftery, E. A. Reyes-Garca, and E. A. Reyes-García, “Nitrogen-Doped InO Thin Film Electrodes for Photocatalytic Water Splitting,” J. Phys. Chem. C, vol. 111, no. 39, pp. 14579–14588, 2007.
[11] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides.,” Science, vol. 293, no. 5528, pp. 269–71, Jul. 2001.
[12] H. Cho, K.-W. Kim, E. A. Douglas, B. P. Gila, V. Craciun, E. S. Lambers, D. P. Norton, F. Ren, and S. J. Pearton, “Band Offsets in Dielectric/InGaZnO4 Heterojunctions,” ECS Trans., vol. 50, no. 6, pp. 367–375, Mar. 2013.
[13] J. Raja, K. Jang, N. Balaji, and J. Yi, “Suppression of temperature instability in InGaZnO thin-film transistors by in situ nitrogen doping,” Semicond. Sci. Technol., vol. 28, no. 11, p. 115010, Nov. 2013.
[14] M. D. H. Chowdhury, M. Mativenga, J. G. Um, R. K. Mruthyunjaya, G. N. Heiler, T. J. Tredwell, and J. Jang, “Effect of SiO2 and SiO2SiNxpassivation on the stability of amorphous indium-gallium zinc-oxide thin-film transistors under high humidity,” IEEE Trans. Electron Devices, vol. 62, no. 3, pp. 869–874, 2015.
[15] A. Abliz, Q. Gao, D. Wan, X. Liu, L. Xu, C. Liu, C. Jiang, X. Li, H. Chen, T. Guo, J. Li, and L. Liao, “Effects of Nitrogen and Hydrogen Codoping on the Electrical Performance and Reliability of InGaZnO Thin-Film Transistors,” ACS Appl. Mater. Interfaces, vol. 9, no. 12, pp. 10798–10804, 2017.
[16] T. T. T. Nguyen, B. Aventurier, T. Terlier, J. P. Barnes, and F. Templier, “Impact of passivation conditions on characteristics of bottom-gate IGZO thin-film transistors,” IEEE/OSA J. Disp. Technol., vol. 11, no. 6, pp. 554–558, 2015.
[17] P. D. C. King, T. D. Veal, D. J. Payne, A. Bourlange, R. G. Egdell, and C. F. McConville, “Surface Electron Accumulation and the Charge Neutrality Level in In2O3,” Phys. Rev. Lett., vol. 101, no. 11, p. 116808, Sep. 2008.
[1] T. Kamiya and H. Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors,” NPG Asia Mater., vol. 2, no. 1, pp. 15–22, 2010.
[2] Y. S. Rim, H. W. Choi, K. H. Kim, and H. J. Kim, “Effects of structural modification via high-pressure annealing on solution-processed InGaO films and thin-film transistors,” J. Phys. D. Appl. Phys., vol. 49, no. 7, 2016.
[3] J. Raja, K. Jang, N. Balaji, W. Choi, T. Thuy Trinh, and J. Yi, “Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors,” Appl. Phys. Lett., vol. 102, no. 8, pp. 1–5, 2013.
[4] J.-F. Chien, C.-H. Chen, J.-J. Shyue, and M.-J. Chen, “Local Electronic Structures and Electrical Characteristics of Well-Controlled Nitrogen-Doped ZnO Thin Films Prepared by Remote Plasma In situ Atomic Layer Doping,” ACS Appl. Mater. Interfaces, vol. 4, no. 7, pp. 3471–3475, Jul. 2012.
[5] J. C. Do, H. B. Kim, C. H. Ahn, H. K. Cho, and H. S. Lee, “Effect of annealing temperature on the electrical characteristics of Ti-Zn-Sn-O thin-film transistors fabricated via a solution process,” J. Mater. Res., vol. 27, no. 17, pp. 2293–2298, 2012.
[6] J. Kim, J. Bang, N. Nakamura, and H. Hosono, “Ultra-wide bandgap amorphous oxide semiconductors for NBIS-free thin-film transistors,” APL Mater., vol. 7, no. 2, Feb. 2019.
[7] B. Ryu, H. K. Noh, E. A. Choi, and K. J. Chang, “O-vacancy as the origin of negative bias illumination stress instability in amorphous In-Ga-Zn-O thin film transistors,” Appl. Phys. Lett., vol. 97, no. 2, pp. 2008–2011, 2010.
[8] S. Chen, W.-P. Zhang, X.-M. Cui, S.-J. Ding, Q.-Q. Sun, and W. Zhang, “Monochromatic light-assisted erasing effects of In-Ga-Zn-O thin film transistor memory with Al 2 O 3 /Zn-doped Al 2 O 3 /Al 2 O 3 stacks,” Appl. Phys. Lett., vol. 104, no. 10, p. 103504, Mar. 2014.
[9] A. Janotti and C. G. Van de Walle, “Oxygen vacancies in ZnO,” Appl. Phys. Lett., vol. 87, no. 12, p. 122102, Sep. 2005.
[10] L.-F. Tang, H. Lu, F.-F. Ren, D. Zhou, R. Zhang, Y.-D. Zheng, and X.-M. Huang, “Electrical Instability of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors under Ultraviolet Illumination,” Chinese Phys. Lett., vol. 33, no. 3, p. 38502, 2016.
[11] I.-T. Cho, J.-M. Lee, J.-H. Lee, and H.-I. Kwon, “Charge trapping and detrapping characteristics in amorphous InGaZnO TFTs under static and dynamic stresses,” Semicond. Sci. Technol., vol. 24, no. 1, p. 015013, Jan. 2009.
[12] T. C. Chen, T. C. Chang, T. Y. Hsieh, M. Y. Tsai, C. T. Tsai, S. C. Chen, C. S. Lin, and F. Y. Jian, “Analyzing the effects of ambient dependence for InGaZnO TFTs under illuminated bias stress,” Surf. Coatings Technol., vol. 231, pp. 465–470, 2013.
[13] J. Raja, K. Jang, N. Balaji, and J. Yi, “Suppression of temperature instability in InGaZnO thin-film transistors by in situ nitrogen doping,” Semicond. Sci. Technol., vol. 28, no. 11, p. 115010, Nov. 2013.
[14] H. Xie, Y. Zhou, Y. Zhang, and C. Dong, “Chemical bonds in nitrogen-doped amorphous InGaZnO thin film transistors,” Results Phys., vol. 11, no. November, pp. 1080–1086, 2018.
[15] K. R. Reyes-Gil, D. Raftery, E. A. Reyes-Garca, and E. A. Reyes-García, “Nitrogen-Doped InO Thin Film Electrodes for Photocatalytic Water Splitting,” J. Phys. Chem. C, vol. 111, no. 39, pp. 14579–14588, 2007.
[16] H. Xie, Q. Wu, L. Xu, L. Zhang, G. Liu, and C. Dong, “Nitrogen-doped amorphous oxide semiconductor thin film transistors with double-stacked channel layers,” Appl. Surf. Sci., vol. 387, pp. 237–243, 2016.
[17] P.-T. Liu, Y.-T. Chou, L.-F. Teng, F.-H. Li, and H.-P. Shieh, “Nitrogenated amorphous InGaZnO thin film transistor,” Appl. Phys. Lett., vol. 98, no. 5, p. 052102, Jan. 2011.
[18] K. Seo, S. Kim, D. B. Janes, M. W. Jung, K.-S. An, and S. Ju, “Effect of nitrogen plasma on the surface of indium oxide nanowires,” Nanotechnology, vol. 23, no. 43, p. 435201, 2012.
[19] L. Tian, G. Cheng, H. Wang, Y. Wu, R. Zheng, and P. Ding, “Effect of nitrogen doping on the structural, optical and electrical properties of indium tin oxide films prepared by magnetron sputtering for gallium nitride light emitting diodes,” Superlattices Microstruct., vol. 101, pp. 261–270, 2017.
[1] P. T. Liu, D. B. Ruan, X. Y. Yeh, Y. C. Chiu, G. T. Zheng, and S. M. Sze, “Highly Responsive Blue Light Sensor with Amorphous Indium-Zinc-Oxide Thin-Film Transistor based Architecture,” Sci. Rep., vol. 8, no. 1, p. 8153, 2018.
[2] S. J. Chang, W. Y. Weng, T. H. Chang, C. J. Chiu, and S.-P. Chang, “A Deep UV Ta2O5/Zinc-Indium-Tin-Oxide Thin Film Photo-Transistor,” IEEE Sens. J., vol. 11, no. 11, pp. 2902–2905, 2011.
[3] M. G. Yun, Y. K. Kim, C. H. Ahn, S. W. Cho, W. J. Kang, H. K. Cho, and Y.-H. Kim, “Low voltage-driven oxide phototransistors with fast recovery, high signal-to-noise ratio, and high responsivity fabricated via a simple defect-generating process OPEN,” Nat. Publ. Gr., 2016.
[4] T. H. Chang, C. J. Chiu, W. Y. Weng, S. J. Chang, T. Y. Tsai, and Z. D. Huang, “High responsivity of amorphous indium gallium zinc oxide phototransistor with Ta2O5 gate dielectric,” Appl. Phys. Lett., vol. 101, no. 26, p. 261112, 2012.
[5] T.-H. Cheng, S.-P. Chang, Y.-C. Cheng, and S.-J. Chang, “Indium Aluminum Zinc Oxide Thin Film Transistor with Al2O3 dielectric for UV sensing,” IEEE Photonics Technol. Lett., vol. 31, no. 13, pp. 1–1, 2019.
[6] X. Wang, B. Yan, Z. Chen, L. Qiang, Y. Zhuo, Y. Pei, G. Cai, J. Lin, and G. Wang, “ Visible-blind UV detector based on water-gated thin film transistor with In2O3 channel grown by metal–organic chemical vapor deposition ,” Jpn. J. Appl. Phys., vol. 57, no. 11, p. 110301, 2018.
[7] T. H. Chang, S. J. Chang, W. Y. Weng, C. J. Chiu, and C. Y. Wei, “Amorphous Indium-Gallium-Oxide UV Photodetectors,” IEEE Photonics Technol. Lett., vol. 27, no. 19, pp. 2083–2086, 2015.
[8] T. Chang, S. Chang, C. J. Chiu, C. Wei, Y. Juan, and W. Weng, “Bandgap-Engineered in Indium – Gallium – Oxide Ultraviolet Phototransistors,” IEEE Photonics Technol. Lett., vol. 27, no. 8, pp. 915–918, 2015.
[9] H. Xie, Y. Zhou, Y. Zhang, and C. Dong, “Chemical bonds in nitrogen-doped amorphous InGaZnO thin film transistors,” Results Phys., vol. 11, no. November, pp. 1080–1086, 2018.
[10] J. Raja, K. Jang, N. Balaji, and J. Yi, “Suppression of temperature instability in InGaZnO thin-film transistors by in situ nitrogen doping,” Semicond. Sci. Technol., vol. 28, no. 11, 2013.
[11] J. Raja, K. Jang, N. Balaji, W. Choi, T. Thuy Trinh, and J. Yi, “Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors,” Appl. Phys. Lett., vol. 102, no. 8, pp. 1–5, 2013.
[12] J. Raja, K. Jang, N. Balaji, S. Qamar Hussain, S. Velumani, S. Chatterjee, T. Kim, and J. Yi, “Aging effects on the stability of nitrogen-doped and un-doped InGaZnO thin-film transistors,” Mater. Sci. Semicond. Process., 2015.
[13] P.-T. Liu, Y.-T. Chou, L.-F. Teng, F.-H. Li, and H.-P. Shieh, “Nitrogenated amorphous InGaZnO thin film transistor,” Appl. Phys. Lett., vol. 98, no. 5, p. 052102, Jan. 2011.
[14] Y. Han, H. Yan, Y. C. Tsai, Y. Li, Q. Zhang, and H. P. D. Shieh, “Influences of nitrogen doping on the electrical characteristics of indium-zinc-oxide thin film transistors,” IEEE Trans. Device Mater. Reliab., vol. 16, no. 4, pp. 642–646, 2016.
[15] H. Xie, Q. Wu, L. Xu, L. Zhang, G. Liu, and C. Dong, “Nitrogen-doped amorphous oxide semiconductor thin film transistors with double-stacked channel layers,” Appl. Surf. Sci., vol. 387, pp. 237–243, 2016.
[16] S. Kim, Y. W. Jeon, Y. Kim, D. Kong, H. K. Jung, M. K. Bae, J. H. Lee, B. Du Ahn, S. Y. Park, J. H. Park, J. Park, H. I. Kwon, D. M. Kim, and D. H. Kim, “Impact of oxygen flow rate on the instability under positive bias stresses in DC-sputtered amorphous InGaZnO thin-film transistors,” IEEE Electron Device Lett., vol. 33, no. 1, pp. 62–64, 2012.
[17] A. Abliz, Q. Gao, D. Wan, X. Liu, L. Xu, C. Liu, C. Jiang, X. Li, H. Chen, T. Guo, J. Li, and L. Liao, “Effects of Nitrogen and Hydrogen Codoping on the Electrical Performance and Reliability of InGaZnO Thin-Film Transistors,” ACS Appl. Mater. Interfaces, vol. 9, no. 12, pp. 10798–10804, 2017.
[18] Y. C. Cheng, S. P. Chang, C. P. Yang, and S. J. Chang, “Integration of bandgap-engineered double-stacked channel layers with nitrogen doping for high-performance InGaO TFTs,” Appl. Phys. Lett., vol. 114, no. 19, 2019.
[19] X. Huang, C. Wu, H. Lu, F. Ren, D. Chen, R. Zhang, and Y. Zheng, “Enhanced bias stress stability of a-InGaZnO thin film transistors by inserting an ultra-thin interfacial InGaZnO:N layer,” Appl. Phys. Lett., vol. 102, p. 114503, 2013.
[20] J. Yang, Y. Han, R. Fu, and Q. Zhang, “Effects of Nitrogen Doping on Performance of Amorphous SnSiO Thin Film Transistor,” J. Disp. Technol., vol. 12, no. 12, pp. 1560–1564, 2016.
[21] H. Oh, S. M. Yoon, M. K. Ryu, C. S. Hwang, S. Yang, and S. H. K. Park, “Photon-accelerated negative bias instability involving subgap states creation in amorphous In-Ga-Zn-O thin film transistor,” Appl. Phys. Lett., vol. 97, no. 18, pp. 2008–2011, 2010.
[22] B. Ryu, H. K. Noh, E. A. Choi, and K. J. Chang, “O-vacancy as the origin of negative bias illumination stress instability in amorphous In-Ga-Zn-O thin film transistors,” Appl. Phys. Lett., vol. 97, no. 2, pp. 2008–2011, 2010.
[23] S. Y. Lee, J. Y. Kwon, and M. K. Han, “Investigation of photo-induced hysteresis and off-current in amorphous In-Ga-Zn oxide thin-film transistors under UV light irradiation,” IEEE Trans. Electron Devices, vol. 60, no. 8, pp. 2574–2579, 2013.
[24] K. Nomura, T. Kamiya, H. Yanagi, E. Ikenaga, K. Yang, K. Kobayashi, M. Hirano, and H. Hosono, “Subgap states in transparent amorphous oxide semiconductor, In-Ga-Zn-O, observed by bulk sensitive x-ray photoelectron spectroscopy,” Appl. Phys. Lett., vol. 92, no. 20, pp. 2006–2009, 2008.
[25] T. Kamiya and H. Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors,” NPG Asia Mater., vol. 2, no. 1, pp. 15–22, 2010.
[26] J. H. Kim, U. K. Kim, Y. J. Chung, and C. S. Hwang, “Correlation of the change in transfer characteristics with the interfacial trap densities of amorphous In-Ga-Zn-O thin film transistors under light illumination,” Appl. Phys. Lett., vol. 98, no. 23, 2011.
[27] Y. C. Cheng, S. P. Chang, S. J. Chang, T. H. Cheng, Y. L. Tsai, Y. Z. Chiou, and L. Lu, “Stability Improvement of Nitrogen Doping on IGO TFTs under Positive Gate Bias Stress and Hysteresis Test,” ECS J. Solid State Sci. Technol., vol. 8, no. 7, pp. Q3034–Q3040, 2019.
[28] C. J. Chiu, S. S. Shih, W. Weng, S. Chang, S. Member, Z. D. Hung, and T. Tsai, “Deep UV Ta2O5 / Zinc-Indium-Tin-Oxide Thin Film Photo-Transistor,” IEEE Photonics Technol. Lett., vol. 24, no. 12, pp. 1018–1020, 2012.
[29] S. Jeon, S. E. Ahn, I. Song, C. J. Kim, U. I. Chung, E. Lee, I. Yoo, A. Nathan, S. Lee, J. Robertson, and K. Kim, “Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays,” Nat. Mater., vol. 11, no. 4, pp. 301–305, 2012.
[30] S. Lany and A. Zunger, “Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 72, no. 3, p. 035215, 2005.
[31] T. Y. Hsieh, T. C. Chang, T. C. Chen, Y. C. Chen, Y. T. Chen, P. Y. Liao, A. K. Chu, W. W. Tsai, W. J. Chiang, and J. Y. Yan, “Application of in-cell touch sensor using photo-leakage current in dual gate a-InGaZnO thin-film transistors,” Appl. Phys. Lett., vol. 101, no. 21, pp. 99–102, 2012.
[32] P. T. Liu, Y. T. Chou, and L. F. Teng, “Charge pumping method for photosensor application by using amorphous indium-zinc oxide thin film transistors,” Appl. Phys. Lett., vol. 94, no. 24, 2009.
[33] J. Yang, H. Kwak, Y. Lee, Y. S. Kang, M. H. Cho, J. H. Cho, Y. H. Kim, S. J. Jeong, S. Park, H. J. Lee, and H. Kim, “MoS2-InGaZnO Heterojunction Phototransistors with Broad Spectral Responsivity,” ACS Appl. Mater. Interfaces, vol. 8, no. 13, pp. 8576–8582, 2016.
[34] T. T. T. Nguyen, O. Renault, B. Aventurier, G. Rodriguez, J. P. Barnes, and F. Templier, “Analysis of IGZO thin-film transistors by XPS and relation with electrical characteristics,” IEEE/OSA J. Disp. Technol., vol. 9, no. 9, pp. 770–774, 2013.
[35] T. Kamiya, K. Nomura, and H. Hosono, “Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping,” J. Disp. Technol., vol. 5, no. 12, pp. 468–483, 2009.
[36] K. R. Reyes-Gil, D. Raftery, E. A. Reyes-Garca, and E. A. Reyes-García, “Nitrogen-Doped InO Thin Film Electrodes for Water Splitting,” J. Phys. Chem. C, vol. 111, no. 39, pp. 14579–14588, 2007.
[37] P. T. Liu, Y. T. Chou, L. F. Teng, F. H. Li, C. S. Fuh, and H. P. D. Shieh, “Ambient stability enhancement of thin-film transistor with InGaZnO capped with InGaZnO:N bilayer stack channel layers,” IEEE Electron Device Lett., vol. 32, no. 10, pp. 1397–1399, 2011.
[38] C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, and E. Giamello, “Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations,” J. Phys. Chem. B, vol. 109, no. 23, pp. 11414–11419, 2005.