簡易檢索 / 詳目顯示

研究生: 謝承剛
Hsieh, Chen-Kang
論文名稱: 鋼筋混凝土梁承受火害之性能設計
Performance-Based Design of Reinforced Concrete Beam Subjected to Fire
指導教授: 方一匡
Fang, I-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 144
中文關鍵詞: 混凝土爆裂
外文關鍵詞: concrete, beam, fire, spalling
相關次數: 點閱:72下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討兩座實尺寸梁柱複合構件於火害情況下梁之變形行為。柱為三面受火,一座試體(BNC1)使用普通混凝土,另一座(BSC1)使用自充填混凝土,依照ISO834標準曲線進行加溫,探討梁於服務載重作用下,在升溫及冷卻過程中,整體溫度分布、變形情形及構件之性能,並驗證相關性能法規。高溫試驗後進行殘餘強度試驗,並探討其變形。同時與前期試體(NC4、NC5、SCC3及SCC4)進行對照。
    BNC1試體加溫到180分鐘時,梁在兩加載點及兩點中點m點所量測之撓度分別為常溫加載時之6.41倍、6.59倍及6.36倍。因BSC1試體劇烈爆裂,加溫到120分鐘,上述各點之撓度分別已達常溫之15.79倍、18.83倍及21.07倍。根據性能法規,試體於高溫作用中劣化深度為52.97 mm、耐火時間為146.31 min,高溫試驗進行66 min時,撓度已達規範之容許值。殘餘強度測試中,在服務載重作用下,BNC1試體在上述各點位之撓度分別為高溫試驗前的1.84倍、1.78倍及1.76倍。BSC1試體之撓度分別為2.44倍、2.11倍及2.47倍。

    The aim of this thesis is to study the behavior of reinforced concrete beams under fire exposure. Two full-scale beam-column sub-assemblage specimens were tested, one (BNC1) is made of normal concrete and the other (BSC1) is self-compacting concrete. Fire tests were conducted according to ISO834 Standard Fire Curve. The temperature distribution, deformation and performance of beams under service loads during heating and cooling stages were studied. The performance-based design guide was validated. After cooling stage, residual strength tests followed. Experimental results were also compared with those obtained in the previous studies (specimens NC4, NC5, SCC3 and SCC4).
    After three hours of heating, the measured deflections at load points P1, P2 and the mid-point m of specimen BNC1 were 6.41, 6.59 and 6.36 ,respectively, times those at ambient condition. The corresponding results of the BSC1 specimen were 15.79, 18.83 and 21.07, respectively. According to performance-based design guide, the deterioration depth of the specimens is 52.97 mm, and the fire endurance is 146.31 min. It also showed that after 66 min of heating, the deformation of the beam had reached the limit of design code. In the residual strength test, the measured deflections at load points P1, P2 and the mid-point of specimen BNC1 under service load were 1.84, 1.78 and 1.76,respectively, times those at pre-heating stage, and those were 2.44, 2.11 and 2.47 times, respectively, for specimen BSC1.

    摘要 I Abstract II 誌謝 III 表目錄 VI 圖目錄 VII 第一章 緒論 1 1-1 研究動機及目的 1 1-2 研究方法 1 第二章 文獻回顧 2 2-1 混凝土於高溫下之材料性質 2 2-1-1 混凝土於高溫下之抗壓強度(fcT')與溫度間之關係 2 2-1-2 混凝土於高溫下之彈性模數(EciT) 6 2-1-3 混凝土於高溫時極限應力所對應之峰值應變(εuT) 6 2-2 混凝土於高溫下之應變 18 2-2-1 熱應變(εth) 18 2-2-2 潛應變εtr 19 2-2-3 瞬態應力相關應變εσ 26 2-3 混凝土構件耐火性能之規範 31 第三章 試驗規劃及試驗方法 33 3-1 梁柱複合構件試體之規劃與製作 33 3-2 加載與加溫試驗設備 44 3-3 量測儀器及量測方法 46 3-3-1 量測儀器 46 3-3-2量測方法 48 3-4 試驗程序及方法 53 3-5 材料試驗 59 3-5-1 混凝土圓柱試體的試驗規劃及試驗程序 59 3-5-2 竹節鋼筋的試體規劃及試驗程序 62 第四章 結果與討論 66 4-1 試體於高溫試驗中之觀察 66 4-1-1 BNC1試體於高溫試驗之觀察 68 4-1-2 BSC1試體於高溫試驗之觀察 72 4-2高溫試驗中梁試體內部溫度之探討 82 4-3 複合構件之梁於服務載重下受高溫之行為 100 4-3-1 梁於高溫作用前之載重與變形之關係 100 4-3-2 梁於高溫試驗中之載重與變形之關係 104 4-4梁於高溫後之加載、變形行為及殘餘強度 118 4-5梁於高溫中之耐火性能驗證 130 第五章 結論 136 參考文獻 139

    1.Lie, T. T., and Lin, T. D., “Fire Performance of
    Reinforced Concrete Columns,” in ASTM STP 882, Fire
    Safety: Science and Engineering, 1985, pp. 176-205.
    2.Eurocode 2: Design of Concrete Structures, ENV EC2, 1992.
    3.Li, L., and Purkiss, J. A., “Stress-Strain Constitutive
    Equations of Concrete Material at Elevated Temperatures,”
    Fire Safety Journal, V. 40, 2005, pp. 669-86.
    4.Schneider, U., and Schneider, M., “An Advanced Transient
    Concrete Model for the Determination of Restraint in
    Concrete Structures Subjected to Fire,” Journal of
    Advanced Concrete Technology, V.7, No. 3, October 2009,
    pp. 403-413.
    5.Hertz, K. D., “Concrete Strength for Sire Safety Design,”
    Magazine of Concrete Research, V. 57, No. 8, 2005, pp.
    445-453.
    6.Lie, T. T.; Rowe, T. J.; and Lin, T. D., “Residual
    Strength of Fire Exposed RC Columns Evaluation and Repair
    of Fire Damage to Concrete,” Detroit: American Concrete
    Institute, SP-9, 1986, pp.153-174.
    7.Lie T. T., Structural fire protection, New York: American
    Society of Civil Engineers, 1992.
    8.Abrams, M. S., “Compressive Strength of Concrete at
    Temperatures to 1600°F,” Temperature and Concrete,
    Detroit: American Concrete Institute, SP-25, 1971, pp. 33-
    59.
    9.Khoury G. A.; Grainger, B. N.; and Sullivan P. J. E.,
    “Transient Thermal Strain of Concrete: Literature Review,
    Conditions within Specimen and Behavior of Individual
    Constituents,” Magazine of Concrete Research, V. 37, No.
    132, September 1985.
    10.Khoury G. A.; Grainger, B. N.; and Sullivan P. J. E.,
    “Strain of Concrete During First Heating to 600˚C Under
    Load,” Magazine of Concrete Research, V. 37, No. 133,
    1985, pp. 195-215.
    11.Bastmai, M., and Aslani, F., “Preloaded High-Temperature
    Constitutive Models and Relationships for Concrete,”
    Transaction A: Civil Engineering, V. 17, No. 1, February
    2010, pp. 11-25.
    12.Anderberg, Y., and Thelandersson, S., “Stress and
    Deformation Characteristics of Concrete at High
    Temperatures: 2 Experimental Investigation and Material
    Behavior Model,” Bulletin 54, Sweden (Lund): Lund
    Institute of Technology, 1976.
    13.Li, L., and Purkiss, J., “Stress-strain constitutive
    equations of concrete material at elevated
    temperatures,”Fire Safety Journal, V. 40, No. 7, 2005,
    pp.669-686.
    14.Schneider, U.; Schneider, M.; and Franssen, J.-M.,
    “Consideration of Nonlinear Creep Strain of Siliceous
    Concrete on Calculation of Mechanical Strain under
    Transient Temperatures as a Function of Load History. In:
    K.H. Tan, V.K.R. Kodur and T.H. Tan, Eds. Fifth
    International Conference – Structures in Fire SIF 08,
    Singapore 28-30 May 2008 Singapore: Research Publishing
    Service, pp. 463-476.
    15.Khennane, A., and Baker, G., “Uniaxial Model for Concrete
    under Variable Temperature and Stress,” Journal of
    Engineering Mechanics, ASCE, V. 119, No. 8, 1993, pp.
    1507-1525.
    16.BSI: Structural Use of Concrete. British Standards
    Institution, BS 8110, 1985.
    17.Xiao, J., and Konig, G., “Study on Concrete at High
    Temperature in China an Overview,” Fire Safety Journal,
    39, 2004, pp. 89-103.
    18.Philleo, R., “Some Physical Properties of Concrete at
    High Temperatures,” ACI Structural Journal, V. 54, No. 4,
    1958, pp. 857-864.
    19.Terro, M. J., “Numerical Modeling of the Behavior of
    Concrete Structures in Fire,” ACI Structure Journal, V.
    95, No. 2, 1998, pp. 183-93.
    20.Bazant, P., and Chern, J. C., “Stress-Induced Thermal and
    Shrinkage Strains in Concrete,” Journal of Engineering
    Mechanics, ASCE, V. 113, No. 10, 1987, pp. 1493-1511.
    21.Schneider, U., “Behavior of Concrete Under Thermal Steady
    State and Non-steady State Conditions,” Fire Matter, V.
    1, No. 3, 1976, pp. 103-115.
    22.Purkiss, J. A., Dougill, J. W., “Apparatus for
    Compression Tests on Concrete at High Temperatures,”
    Magazine of Concrete Research, V. 25, No.83, 1973, pp.
    102-108.
    23.Purkiss, J. A., Fire Safety Engineering Design of
    Structures, Oxford, Butterworth Heinemann, 1996.
    24.Abrams, M. S., “Behavior of Inorganic Materials in
    Fire,” In: ASTM Symposium on Design of Buildings for Fire
    Safety, Boston, 1978.
    25.Thelandersson, S., “Modeling of Combined Thermal and
    Mechanical Action in Concrete,” Journal of Engineering
    Mechanics, V. 113, No. 6, 1987, pp. 893-906.
    26.Bazant, Z. P., and Chern J. C., “Concrete Creep at
    Variable Humidity: Constitutive Law and Mechanism,”
    Materials and Structures, V. 103, No. 18, 1985, pp.1-20.
    27.Gillen, M., “Short-Term Creep of Concrete at Elevated
    Temperatures,” Fire Matter, V. 5, No. 4, 1981, pp. 142-
    148.
    28.Malhotra, H. L., “Effect of Temperature on the
    Compressive Strength of Concrete,” Magazine of Concrete
    Research, V. 8, 1956, pp. 85-94.
    29.Nielsen, C. V.; Pearce, C. J.; and Bicanic, N.,
    “Theoretical Model of High Temperature Effects on
    Uniaxial Concrete Member under Elastic Restraint,”
    Magazine of Concrete Research, V. 54, No. 4, 2002, pp.
    239-249.
    30.Persson, B., “Self-Compacting Concrete at Fire
    Temperature,” TVBM-3110, Sweden (Lund): Division of
    building materials, Lund Institute of Technology, 2003.
    31.Kordina, K.; Wydra, W.; and Ehm, C., “Analysis of the
    Developing Damage of Concrete Due to Heating and
    Cooling,” In: Harmathy, T. Z., editor. Symposium of
    Evaluation and Repair of Fire Damage to Concrete, 1986,
    pp.87-113.
    32.Youssef, M., and Moftah M., “General stress-strain
    relationship for concrete at elevated temperatures,”
    Journal of Engineering Structures, V. 29, No. 20, 2006,
    pp. 2618-2634.
    33.Schneider, U., “Modeling of Concrete Behavior at High
    Temperatures,” In: Anchor, R. D.; Malhotra, H. L.; and
    Purkiss J. A., Proceeding of international conference of
    design of structures against fire, 1986, pp. 53-69.
    34.Schneider, U.; Schneider, M.; and Franssen, J.-M.,
    “Numerical Evaluation of Load Induced Thermal Strain in
    Restraint Structures Compared with an Experimental Study
    on Reinforced Concrete Columns,” In: Interscience
    Communications, Eds. 11th International Conference and
    Exhibition, Fire and Materials, San Francisco 26-28
    January 2009, 26th – 28th January 2009, London:
    Interscience Communications Ltd, pp. 485-497.
    35.Gernay T., “Effect of Transient Creep Strain Model on the
    Behavior of Concrete Columns Subjected to Heating and
    Cooling,” Fire Technology, April 2011.
    36.內政部建築研究所,「建築物構造防火性能驗證技術手冊」,台灣,2008
    37.張君輔,「鋼筋混凝土梁柱複合構件受高溫之行為研究 ─ 普通混凝土梁之行
    為」,碩士論文,國立成功大學土木工程研究所,台南,2010
    38.邱柏昇,「鋼筋混凝土房屋構架在高溫中、後之行為研究 ─ 普通混凝土梁之
    行為」,碩士論文,國立成功大學土木工程研究所,台南,2009
    39.王奕程,「鋼筋混凝土梁柱複合構件於高溫中、後之行為研究 ─ 自充填混凝土
    梁之承力行為」,碩士論文,國立成功大學土木工程研究所,台南,2008
    40.周禮緯,「鋼筋混凝土梁柱複合構件受高溫中、後之行為研究 ─ 自充填混凝
    土梁之行為」,碩士論文,國立成功大學土木工程研究所,台南,2009
    41.林岱蔚,「鋼筋混凝土梁柱複合構件受高溫之行為研究 ─ 自充填混凝土梁之行
    為」,碩士論文,國立成功大學土木工程研究所,台南,2010
    42.ACI Committee 318, “Building Code Requirements for
    Structural Concrete (ACI 318-11) and Commentary,”
    American Concrete Institute, Farmington Hills, MI, 2011,
    503 pp.

    下載圖示 校內:2015-09-10公開
    校外:2015-09-10公開
    QR CODE