| 研究生: |
廖皎妙 Liao, Chiao-Miao |
|---|---|
| 論文名稱: |
應用砷風險指標評估漁塭地下水使用與管理之研究 Risk-based Regulation and Management of Groundwater with Arsenic used in Farmed Pond Water |
| 指導教授: |
李振誥
Lee, Cheng-Haw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 烏腳病 、逐步指標模擬法 、地質統計 、地下水管理 、風險評估 、生物累積 |
| 外文關鍵詞: | Blackfoot Disease, Bioaccumulation, Geostatistics, Sequential Indicator Simulation, Risk assessment, groundwater management |
| 相關次數: | 點閱:140 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣早期嘉南地區之布袋鎮、義竹鄉、學甲鎮與北門鄉等四鄉鎮曾爆發嚴重的烏腳病(Blackfoot Disease,BFD)疫情。此四鄉鎮為國內主要養殖漁塭地區,由於地表水之水源不足,地下水成為主要用水來源,大量抽取地下水的結果,除造成地層下陷及海水入侵問題外,使用含砷地下水養殖漁塭,地下水中砷經由食物鏈的生物累積作用,進入人體而影響健康。本研究使用地質統計中的逐步指標模擬法重現四鄉鎮地下水砷含量之空間分布情況,應用風險評估概念探討在不同風險值TR(10-4~10-6)百分位數50th、75th、95th狀況下,養殖漁塭地下水與地面水合理之使用比例。研究結果顯示TR為10-6風險下建議使用百分位數50th標準進行漁塭地區地下水管理,在此標準下布袋北端與學甲漁塭地區,地下水與地面水使用比例DR值介於0.7至1之間,布袋與義竹南端DR為0.5以下。TR為5×10-6風險下建議使用百分位數75th標準進行漁塭地區之地下水管理,在此標準下布袋南端以及北門DR值大部分都在0.5以下,義竹與學甲DR值則介於0.5至1之間。TR為10-5風險下建議使用百分位數95th標準進行漁塭地區之地下水管理,在此標準下布袋及義竹南端與北門DR值大部分為0.5以下,其他地區DR值則介於0.5至1之間。而TR為5×10-5與10-4風險值過大,因此不建議以此風險值訂定地下水管理標準。根據本研究結果,建議訂定TR為10-5風險並使用95th標準進行漁塭地區地下水管制標準,以達到風險評估之成效,保障民眾的健康。
Blackfoot Disease (BFD) had occurred seriously in the Budai, Yijhu, Shiuejia, and Beimen townships of Chia-Nan District of Taiwan in the early days.These four townships are the districts of fishpond cultivation domestically in Taiwan. Groundwater becomes the main water supply because of short income in surface water. The problems of over pumping in groundwater may not only result in land subsidence and seawater intrusion but also be harmful to the health of human giving rise to the bioaccumulation via food chain in groundwater with arsenic. This research use Sequential Indicator Simulation (SIS) of Geostatistical method to reproduce the spatial arsenic distribution of groundwater contaminated in the above four townships. At the same time, risk assessment is applied to probe the utilization ratio of using surface and groundwater for fish farming in the range of target cancer risk (TR) especially on the magnitude of 10-4~10-6 orders in association within the 50th、75th and 95th percentage. The results of this study suggest that groundwater management of fishpond cultivation should be recommanded that firstly under the magnitude of 10-6 order of TR by the 50th percentage of the dilution ratio (DR) is 0.7 to 1 in northern Budai and Shiuejia, and is less than 0.5 in Budai and southern Yijhu, secondly under the magnitude of 5×10-6 order of TR by the 75th percentage of the DR is less than 0.5 in southern Budai and Beimen as well as DR is 0.5 to 1 in Yijhu and Shiuejia and lastly under the magnitude of 10-5 order of TR by the 95th percentage of the DR is less than 0.5 in Budai, southern Yijhu and Beimen, as well as the DR is 0.5 to 1 in other area. The TR is too large to use 5×10-5 and 10-4 to be the standard of groundwater management. According to this study, we suggest that proceeding groundwater management of fishpond cultivation under the magnitude of 10-5 order of TR by the 95th percentage of the DR is to achieve the effect of risk assessment, and ensure public health.
(一) 英文部份
Bethany O'Shea, Jerzy Jankowski, and Jesmond Sammut, The source of naturally occurring arsenic in a coastal sand aquifer of eastern Australia, Science of the Total Environment, 379: 151-166, 2007.
Chen, C.J., Hsueh, Y.M., Lai, M.S., Shyu, M.P., Chen, S.Y., Wu, M.M., Kuo, T.L., and Tai, T.Y., Increased Prevalence of Hypertension and Long-Term Arsenic Exposure, Hypertension, 25: 53-60, 1995.
Chen, C.J., Hsu, L.I., Wang, C.H., Shih, W.L., Hsu, Y.H., Tseng, M.P., Lin, Y.C., Chou, W.L., Chen, C.Y., Lee, C.Y., Wang, L.H., Cheng, Y.C., Chen, C.L., Chen, S.Y., Wang, Y.H., Hsueh, Y.M., Chiou, H.Y., Wu, M.M., Biomarkers of exposure, effect, and susceptibility of arsenic-induced health hazards in Taiwan, Toxicology and Applied Pharmacology, 206: 198-206, 2005.
Chilès, J.P., Delfiner, P., Geostatistics: Modeling Spatial Uncertainty; John Wiley and Sons Inc., New York, 283-287, 1999.
Cressie, N., Statistics for Spatial Data, Wiley: New York, 1993.
Delhomme, J.P., Kriging in hydroscience, Advance in Water Resources, 1: 226-251, 1978.
Deutsch, C.V., and Journel, A.G., GSLIB: Geostatistical Software Library and User’s Guide; 2nd Edition, Oxford University Press: New York, 1998.
Deutsch, C.V., Geostatistical Reservoir Modeling, Oxford University Press: New York, 124-152, 2002.
Goovaerts, P., Geostatistics for Natural Resources Evaluation, Oxford University Press: New York, 259-368, 1997.
Goovaerts, P., AvRuskin, G., Meliker, J., Slotnick, M., Jacquez, G., Nriagu, J., Geostatistical modeling of the spatial variability of arsenic in groundwater of southeast Michigan, Water Resources Research, 41:W07013, DOI: 10.1029/2004 WR003705, 2005.
Han, B.C., Jeng, W.L., Jeng, M.S., Kao, L.T., Meng, P.J., and Huang, Y.L., Rock-shells (Thais clavigera) as an indicator of As, Cu, and Zn contamination on the Putai coast of the black-foot disease area in Taiwan, Archives of Environmental Contamination and Toxicology, 32: 456-461, 1997.
Huang, Y. K., Lin, K. H., Chen H. W., Chang, C. C., Liu, C. W., Yang, M. H., and Hsueh, Y. M., Arsenic Species Contents at Aquculture Farm and in Farmed Mouthbreeder (Oreochromis Mossambicus) in Blackfoot Disease Hyperendemic Areas, Food and Chemical Toxicology, 41: 1491-1500, 2003.
Isaaks, E.H., and Srivastava, R.M., An Introduction to Applied Geostatics, Oxford University Press: New York, 278-322, 1989.
Jain, C.K., Ali, I., Arsenic: Occurrence, toxicity and speciation techniques, Water Resource, 34: 4304-4312, 2000.
Jang, C.S., Liu, C.W., Lin, K.H., Huang, F.M., and Wang, S.W., Spatial analysis of potential carcinogenic risks associated with ingesting arsenic in aquacultural tilapia (Oreochromis mossambicus) in blackfoot disease hyperendemic areas, Environmental Science and Technology, 40: 1707-1713, 2006.
Jang, C.S., Probabilistic assessment of safe groundwater utilization in farmed fish ponds of blackfoot disease hyperendemic areas in terms of the regulation of arsenic concentrations, Science of the Total Environment, 392: 59-68, 2008.
Jang, C.S., Lin, K.H., Liu, C.W., and Lin, M.C., Risk-based assessment of arsenic -affected aquacultural water in blackfoot disease hyperendemic areas, Stochastic Environmental Research and Risk Assessment, DOI: 10.1007/s00-477-008-0245-3, 2008.
Lee, J.J., Jang, C.S., Liang, C.P., and Liu, C.W., Assessing carcinogenic risks associated with ingesting arsenic in farmed smeltfish (Ayu, Plecoglossus altirelis) in aseniasis-endemic area of Taiwan, Science of the Total Environment, 403: 68-79, 2008.
Liang, C.P., Jang, C.S., Liu, C.W., Lin, K.H., and Lin, M.C., An integrated GIS-based approach in assessing carcinogenic risks via food-chain exposure in arsenic-affected groundwater areas, Environmental Toxicology, DOI: 10.1002/tox. 20481, 2009.
Liao, C.M., and Ling, M.P., Assessment of human health risks for arsenic bioaccumulation in tilapia (Oreochromis mossambicus) and large-scale mullet (Liza macrolepis) from blackfoot disease area in Taiwan, Archives of Environmental Contamination and Toxicology, 45: 264-272, 2003.
Liao, C.M., Chen, B.C., Singh, S., Lin, M.C., Liu, C.W and Han, B.C., Acute toxicity and bioaccumulation of arsenic in tilapia (Oreochromis mossambicus) from a blackfoot disease area in Taiwan, Environmental Toxicology, 18: 252-259, 2003.
Liao, C.M., Shen, H.H., Lin, T.L., Chen, S.C., Chen, C.L., Hsu, L.I., and Chen, C.J., Arsenic cancer risk posed to human health from tilapia consumption in Taiwan, Ecotoxicology and Environmental Safety, 70: 27-37, 2008.
Lin, Y.P., Chang, T.K., Shih C.W., and Tseng, C.H., Factorial and indicator kriging methods using a geographic information system to delineate spatial variation and pollution sources of soil heavy metals, Environmental Geology, 42: 900-909, 2002.
Lin, M.C., Liao, C.M., Liu, CW., and Singh, S., Bioaccumulation of arsenic in aquacultural large-scale mullet Liza marcolepts from blackfoot disease area in Taiwan, Bulletin of Environmental Contamination and Toxicology, 67: 91-97, 2001.
Lin, M.C., Lin, H.Y., Cheng, H.H., Chen, Y.C., Liao, C.M., and Shao, K.T., Risk assessment of arsenic exposure from consumption of cultured milkfish, Chanos chanos (Forsskål), from the arsenic-contaminated area in southwestern Taiwan, Bulletin of Environmental Contamination and Toxicology, 75: 637-644, 2005.
Lin, M.C., Liao, C.M., Assessing the risks on human health associated with inorganic arsenic intake from groundwater-cultured milkfish in southwestern Taiwan, Food and Chemical Toxicology, 46: 701-709, 2008.
Liu, C.W., Jang, C.S., Liao, C.M., Evaluation of arsenic contamination potential using indicator kriging in the Yun-Lin aquifer (Taiwan), Science of the Total Environment, 321: 173-188, 2004.
Liu, C.W., Huang, F.M., Hsueh, Y.M., Revised cancer risk assessment of inorganic arsenic upon consumption of tilapia (Oreochromis mossambicus) from blackfoot disease hyperendemic areas, Bulletin of Environmental Contamination and Toxicology, 74: 1037-1044, 2005.
Liu, C.W., Liang, C.P., Huang, F.M., and Hsueh, Y.M., Assessing the human health risks from exposure of inorganic arsenic through oyster (Crassostrea gigas) consumption in Taiwan, Science of the Total Environment, 361: 57-66, 2006.
Liu, C.W., Wang, S.W., Jang, C.,S, Lin, K.H., Occurrence of arsenic in groundwater of the Choshui river alluvial fan, Taiwan, Journal of Environmental Quality, 35: 68-75, 2006.
Liu, C.W., Liang C.P., Lin K.H., Jang C.S., Wang S.W., Huang Y.K., Hsueh Y.M., Bioaccumulation of arsenic compounds in aquacultural clams (Meretrix lusoria) and assessment of potential carcinogenic risks to human health by ingestion, Chemosphere 69: 128-134, 2007.
Parameswaran, V., Ahmed, VPI., Shukla, R., Bhonde, R.R., Hameed, ASS., Development and characterization of two new cell lines from milkfish (Chanos chanos) and grouper (Epinephelus coioides) for virus isolation, Mar Biotechnol, 9: 281-291, 2007.
Mandal, B.K., and Suzuki, K.T., Arsenic round the world: a review. Talanta, 58: 201-235, 2002.
Rahman, A. F., Gamon, J. A., Sims D. A., and Schmidts, M., Optimum pixel size for hyperspectral studies of ecosystem function in southern California chaparral and grassland, Remote Sensing of Environment, 84: 192-207, 2003.
Smedley, P.L., and Kinniburgh, D.G., A review of the source, behaviour and distribution of arsenic in natural waters, Applied Geochemistry, 17: 517-568, 2002.
Smith JVS, Jankowski J, and Sammut J, Vertical distribution of As(III) and As(V) in a coastal sandy aquifer: factors controlling the concentration and speciation of arsenic in the Stuarts Point groundwater system, Northern New South Wales, Australia, Applied Geochemistry, 18: 1479-1496, 2003.
Smith JVS, Jankowski J, and Sammut J, Natural occurrences of inorganic arsenic in the Australian coastal groundwater environment: implications for water quality in Australian coastal communities. In: Naidu R, Smith E, Owens G, Bhattacharya P, Nadebaum P, editors. Managing arsenic in the environment: from soil to human health, Melbourne, Australia: CSIRO Publishing, 129–153, 2006.
SPSS Inc., SPSS BASE 8.0-Application Guide, SPSS Inc., Chicago, 1998.
Thomas, D. J., Styblo, M., and Lin, S., The cellular metabolism and systemic toxicity of arsenic, Toxicology and Applied Pharmacology, 176: 127-144, 2001.
US EPA. Special report on ingested inorganic arsenic: Skin cancer; nutritional essentiality. United States Environmental Protection Agency Risk Assessment Forum, Washington, DC. EPA/625/3-87/013, 1988.
US EPA. Guidance manual for assessing human health risks from chemically contaminated, fish and shellfish. Washington, DC: United States Environmental Protection Agency. EPA-503/8-89-002, 1989.
US EPA. Risk-based concentration table, Region 3, Philadelphia, PA. United States Environmental Protection Agency, Available: http://www.epa.gov/reg3hwmd/risk /human/index.htm, 2006.
Van Meirvenne, M., Goovaerts, P., Evaluating the probability of exceeding a site -specific soil cadmium contamination threshold, Geoderma, 102:75-100, 2001.
WHO, Environmental Health Criteria 224: Arsenic compounds 2nd edition, World Health Organisation, Geneva, 2001.
(二) 中文部份
中央地質調查所(http://www.moeacgs.gov.tw),2009。
王聖瑋,台灣西南沿海地區地層環境中砷之來源與釋出機制,國立臺灣大學生物環境系統工程學研究所博士論文,2006。
江介倫、鄭克聲,指標克利金空間推估應用於衛星遙測影像分類,航測及遙測學刊,第9卷,第2期,第43-58頁,2004。
行政院環境保護署(http://www.epa.gov.tw),2009。
行政院環保署,烏腳病流行地區飲用水井含砷量檢測計畫,1993。
呂峰洲、楊重光、林國煌,嘉南烏腳病患區飲用水之理化性質,台灣醫學會雜誌,第74卷,第596~605頁,1975。
呂鋒洲、劉東明,烏腳病患區水中螢光物質動物實驗模式,台灣醫學會雜誌,第85卷,第352-358頁,1986。
林欣儀,台灣西南沿海烏腳病疫區養殖虱目魚之砷含量風險評估,南華大學環境管理研究所碩士論文,2003。
林高弘,台灣西南沿海地區養殖生態系統物種砷之時空分布及生物累積,國立臺灣大學生物環境系統工程學研究所博士論文,2004。
許峻銘,應用地質統計方法推估台北盆地的安全出水量,國立成功大學資源工程學系碩士論文,2005。
許惠悰,風險評估與管理,新文京開發出版股份有限公司,2006。
陳宜清、陳俊宏,探討於生態風險評估之不確定性,科學與工程技術,第2卷,第1期,第49-60頁,2006。
陳獻、梁榮元與賴國興,嘉義縣及台南縣合理養殖魚用水量之調查分析,農業工程研討會論文,1996。
陳獻,合理養殖用水量之現況調查分析(第三年),農業工程研究中心研究報告,
財團法人農業工程研究中心,1999。
陳獻、梁榮元、賴國興、陳奇麟,循環水養殖技術之訓練與推廣-合理養殖用水量之調查與分析,財團法人農業工程研究中心,2001。
黃信彰,以指標地質統計方法建構水文地質模式之研究,國立成功大學資源工程學系碩士論文,2001。
楊瑩文,臺灣嘉南平原西南沿海烏腳病地區地下水砷之氧化還原反應,國立成功大學地球科學研究所碩士論文,2006。
漁業年報,行政院農業委員會漁業署(http://www.fa.gov.tw),2005,2007。
劉振宇、王聖瑋、盧光亮、張誠信,機率劃定臺灣西南沿海烏腳病盛行地區地下水砷污染範圍,臺灣水利,第54卷,第4期,第30-43頁,2006。
劉振宇、林高弘,臺灣地區地下水砷之生態遷移,地質,第24卷,第2期,第61-68頁,2005。
鄭旭惠,台灣西南沿海地區地下水養殖虱目魚之砷累積研究,南華大學環境管理研究所碩士論文,2003。
賴典章、費立沅與江崇榮,台灣地區地下水分區特性,水文地質調查與應用研討會論文集,1-24頁,2003。
薛光展,嘉南地區地下水含砷濃度對稻米含砷量之風險評估,國立成功大學資源工程學系碩士論文,2006。
顏富士,曾文溪下游之砷異常及板岩屑與漂砂,科學發展,第6卷,第3期,第227-243頁,1978。
顏富士、龍村倪、呂泰華,台灣省地下水含砷異常之環境模式初議,台灣環境衛生,第12卷,第1期,第66-80頁,1980。