| 研究生: |
任維傑 Jen, Wei-Chieh |
|---|---|
| 論文名稱: |
探討厭氧產氫純菌Clostridium在不同pH下之反應動力機制 Metabolic study of Clostridium species for biological hydrogen production under different pH conditions. |
| 指導教授: |
黃良銘
Whang, Liang-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | pH 、Clostridium 、數學模式模擬 、glucose 、生物產氫 |
| 外文關鍵詞: | biological hydrogen production, glucose, model, Clostridium, pH |
| 相關次數: | 點閱:182 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著文明的發展及人口的成長,人類對於新興乾淨能源的需求將更為迫切。而因應化石能源的短缺及環境污染的日益嚴重,開發新型替代能源為目前各國政府所積極推行,永續且潔淨的再生能源亦是關注焦點。再生能源中,氫氣具有高能量及不會造成二次污染的特性,且利用厭氧微生物產生氫氣除了是清潔能源的生產外亦具有資源再利用的優勢,極具發展潛力。
在厭氧生物產氫程序中,由於大量的酸生成將形成一個低pH的環境,而造成hydrogenase的活性下降或微生物代謝途徑的改變。因此利用clostridia為厭氧產氫程序的主要微生物時,pH的控制成為一個重要的控制因子。近來許多研究報告指出Clostridium屬為厭氧發酵產氫系統中之主要優勢菌種,本研究利用由厭氧發酵產氫系統中分離出之純菌Clostridium butyricum、Clostridium tyrobutyricum及Clostridium beijerinckii進行生物氫氣產能試驗(BHP test),以10,000 mg/L glucose和peptone(3:2 (w/w))作為基質,溫度控制於35℃,且在pH控制為7、6、5和不控制pH狀況下探討其產氫特性。
在不控制pH的狀況之下,Clostridium tyrobutyricum有最佳之產氫量,產氫yield約為1.8 mmol /mmol glucose;在有控制pH的狀況之下,三株純菌皆在pH=6時有最佳的產氫量,其中以Clostridium beijerinckii和Clostridium butyricum產氫yield為1.7 mmol/mmol glucose最佳。此外,並利用數學模式模擬建立Clostridium菌種於批次實驗中降解葡萄糖之動力模式。此模式可正確描述葡萄糖降解、生物生長、乙酸、丁酸、氫氣及其他產物之生成趨勢。
在大部分的pH狀況下,Clostridium菌種降解葡萄糖產生揮發酸,其中以乙酸和丁酸為主要產物,但隨著pH的改變,微生物代謝途徑有移轉的現象,在pH控制為7的批次實驗中,觀察到揮發酸產物種類較多,包括乳酸、甲酸、乙酸、丙酸及丁酸,然而對於產氫量亦有一定的影響。
Due to the development of civilization, increasing population, and shortage of petrochemical energy in the near future, there is an urgent need to develope sustainable energy. Hydrogen is considered a clean and efficient energy among renewable resources, producing water as its only by-product when it burns. Moreover, hydrogen can be produced from renewable raw materials such as organic wastes by anaerobic microorganism. Therefore, hydrogen is a potential clean energy substitute for fossil fuels.
In anaerobic biological hydrogen production, a large amount of volatile fatty acids creates a low pH environment which causes the decrease of hydrogenase activity or alteration of metabolic pathways. Therefore, when using clostridia as the main microorganism in anaerobic hydrogen production process, the control of pH will be an important factor in overall hydrogen fermentation. Recent reports pointed out that Clostridium species were the dominant microorganisms in anaerobic hydrogen fermentation processes. The biochemical hydrogen potential (BHP) tests were conducted to investigate the metabolism and hydrogen production performance of various Clostridium species, including Clostridium butyricum, Clostridium tyrobutyricum and Clostridium beijerinckii isolated from hydrogen fermentation processes. The reactor batch experiments were operated at 35℃ with 10,000 mg/L glucose, peptone (3:2(w/w)) as substrate.The pH value were controlled at 7, 6, 5 and uncontrolled condition to investigate hydrogen production performance of Clostridium species.
Among the strains examined, Clostridium tyrobutyricum had the highest hydrogen production yield of 1.8 mmol/mmol glucose at uncontrolled pH condition;Clostridium butyricum and Clostridium beijerinckii had the highest hydrogen production yield of 1.7 mmol/mmol glucose when pH were controlled at 6. A kinetic model was developed to evaluate the metabolism of glucose fermentation of the three Clostridium species in the batch reactors. The model, in general, was able to accurately describe the profile of glucose degradation as well as the production of biomass, acetate, butyrate, hydrogen and other products observed in the batch tests.
Almost in all batch tests, Clostridium species degraded glucose to produce acetate and butyrate as the major volatile fatty acids. But the metabolism pathway shifted with the variation of pH. When pH was controlled at 7, many kinds of volatile fatty acid products were observed, including lactate, formate, acetate, propionate and butyrate. However, it would make some influences on hydrogen production performance.
張士旻、鄭幸雄
利用薄膜反應器於高溫厭氧產氫生物程序之研究,國立成功大學環境工程 學系碩士論文(2001)。
經濟部能源委員會
中華民國九十年臺灣能源統計報(2002)。
白明德、鄭幸雄、趙禹杰、蕭嘉瑢、楊雅斐
厭氧發酵程序中氫分壓的影響與重要性,第27 屆廢水研討會論文集(2002)。
梁德明、鄭幸雄、吳坤龍
Behavior of gas separation for submersed hollow fibers installed in an anaerobic hydrogen fermentor, 第27屆廢水研討會論文集(2002)。
鄭幸雄、白明德、蔡遠瑋、王永福、蕭嘉瑢
厭氧產氫菌分解蛋白質之機制探討,第28屆廢 水研討會論文集(2003a)。
鄭幸雄、白明德、趙禹杰
厭氧產氫菌分解高分子碳水化合物及peptone之產氫機制,第28 屆廢水研討會論文集(2003b)。
鄭幸雄、林秋裕、曾怡禎、李季眉、林信一、林明瑞、陳幸德
複合基質生物產氫機制及程 序應用之整合研究2002年,第28屆廢水研討會論文集(2003c)。
蕭嘉瑢、鄭幸雄
複合基質厭氧產氫發酵生物程序操控之功能評估及分生檢測生態之研究,國立成功大學環境工程學系碩士論文(2004)。
趙禹杰、鄭幸雄
澱粉及蛋白腖複合基質厭氧發酵程序之功能評估,國立成功大學環境工程 學系碩士論文(2004)。
洪國展、李季眉
光合產氫之程序組合及應用,國立中興大學環境工程學系碩士論文(2004)。
林佩瑩、吳怡儒、任維傑、李學霖、黃良銘 Clostridium屬菌株生物產氫:代謝途徑與數學模式模擬研究,第29屆廢水研討會論文集(2004)。
Adams, M. W., Mortenson, L. E. and Chen, J. S. Hydrogenase. Biochim. Biophys. Acta. 594, 105~176. (1980)
Adams, M. W., Eccleston, E. and Howard, J. B. Iorn-sulfur clusters of hydrogenase I and hydrogenase II of Clostridium pasteurianum. Proc. Natl. Acad. Sci. USA. 86, 4932~4937. (1989)
Adams, M. W.
Biochim. Biophys. Acta. 1020, 115~145. (1990)
Adams, M. W. and Stiefel, E. I.
Biological hydrogen production: not so elementary. Sci. 282, 1842~1843. (1998)
Albracht, S. P. J.
Spectroscopy-the functional puzzle In: Hydrogen as a fuel: learning from nature, Commack, R., Frey, M., Robson, R. (ed.), Taylor & Francis, London and New York. (2001)
Andel, J. G., Zoutberg, G. R., Crabbendam, P. M. and Breure, A. M.
Glucose fermentation by Clostridium butyricum growth under a self generated gas atmosphere in chemostat culture. Appl. Microbiol. Biotechnol. 23, 21~26. (1985)
Andreesen, J. R., Bahl, H. and Gottschalk, G. Introduction to the physiology and biochemistry of the genus Clostridium. In: Biotechnology handbooks: Clostridia, Minton, N. P. and Clarke, D. J. (ed.), New York: Plenum Press. (1998)
Asada, Y., Koike, Y., Schnackenberg, J., Miyake, M., Uemura, I. and Miyake, J.
Heterologous expression of clostridial hydrogenase in the cyanobacterium Synechococcus PCC7942. Biochim. Biophys. Acta. 1490, 269~278. (2000)
Baldwin, R. L. and Milligan, L. P.
Electron transport in Peptostreptococuss elsdenii. Biochim. Biophys. Acta. 92, 421~432. (1964)
Baronofsky, J. J., Schreus, W. J. A. and Kashket, E. R.
Uncoupling by acetic acids limits growth of and acetogenisis by Clostridum thermoaceticum. Appl. Environ. Microbial. 48, 1134~1139. (1984)
Batstone, D. J., Keller, J., Angelidaki, I., Kalyuzhnyi, S. V., Pavlostathis, S. G., Rozzi, A., Sanders, W. T. M., Siegrist, H. and Vavilin, V. A.
Anaerobic digestion model No. 1. IWA Scientific and Technical Report No. 13, London. (2002)
Brosseau, J. D. and Zajic, J. E.
Hydrogen-gas production with Citrobacter intermedius and Clostridium pasteurianum. J. Chemi. Technol. Biotechnol. 32, 496~502. (1982)
Buchanan, B. B. and Arnon, D. I.
Ferredoxins:chemistry and function in photosynthesis, nitrogen fixation and fermentative metabolism. Adv. Enzymol. 33, 119~176. (1970)
Cammack, R.
Origins, evolution and the hydrogen biosphere. In: Hydrogen as a fuel: learning from nature, Commack, R., Frey, M., Robson, R. (ed.), Taylor & Francis, London and New York. (2001)
Canganella, F. and Wiegel, J.
The potential of thermophlic clostridia in biotechnology. In: The Clostridia and Biotechnology, D. R. Woods, (eds), Butterworth-Heinemann. (1993)
Cato, E. P., George, W. L. and Finegold, S. M. The genus Clostridium. In: H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (ed.), Bergey’s manual of systematic bacteriology, vol. 2. The Williams & Wilkins Co., Baltimore, 1141~1200. (1986)
Chen, J. S. and Mortenson, L. E.
Purification and properties of hydrogenase from Clostridium pasteuriamin W5. Biochim. Biophys. Acta. 371, 283~293. (1974)
Chen, W. M., Tseng, Z. J., Lee, K. S. and Chang, J. S.
Fermentation hydrogen production with Clostridum butyricum CGS5 isolation from anaerobic sewage sludge. Int. J. Hydrogen Energy. 30, 1063~1070. (2005)
Colin, T., Bories, A., Lavigne, C. and Moulin, G.
Effects of acetate and butyrate during glycerol fermentation by Clostridum butyricum. Current Microbio. 43, 238~243. (2001)
Costello, W. J., Greenfield, P. F. and Lee, P. L.
Dynamic modelling of a single-stage high-rate anaerobic reactor- I. Model derivation. Water Res. 25, 859~871. (1991)
Crabbendam, P. M., Neijssel, O. M. and Tempest, D. W.
Metabolic and energetic aspects the growth of Clostridum butyricum on glucose in chemostat culture. Arch. Microbiol. 142, 375~382. (1985)
Dabrock, B., Bahl, H. and Gottschalk, G. Parameters affecting solvent production by Clostridium pasteuriamun. Appl. Environ. Microbiol. 58, 1233~1239. (1992)
Das, D. and Veziroglu, T. N.
Hydrogen production by biological processes: a survey of literature. Int. J. Hydrogen Energy. 26, 13~28. (2001)
Desvaux, M., Guedon, E. and Petitdemange, H. Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Appl. Environ. Microbiol. 66, 2461~2470. (2000)
Durre, P., Kuhu, A., Gottwald, M. and Gottschalk, G.
Enzymatic investigations on butanol dehydrogenase and butyraldehyde dehydrogenase in extracts of Clostridium acetobutylicum. Appl. Microbiol. Biotechnol. 26, 268~272. (1987)
Eastman, J. A. and Ferguson, J. F. Solubilization of particulate organic carbon during the acid phase of anaerobic digestion, J. Wat. Poll. Cont. Fed. 53, 352~366. (1981)
Ezeji, T. C., Qureshi, N. and Blaschek, H. P. Acetone butanol ethanol (ABE) production from concentrated substrate:reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl. Microbiol. Biotechnol. 63 (6), 653~658. (2004)
Fang, H. P. and Liu H.
Effect of pH on hydrogen production from glucose by mixed culture. Bioresour. Technol. 82, 87~93. (2002)
Fang, H. P., Zhang, T. and Liu H.
Microbial diversity of a mesophlic hydrogen-producing sludge. Appl. Microbiol. Biotechnol. 58, 112~118. (2002a)
George, H. A., Johnson, J. L., Moore, W. E. C., Holdeman, L. V. and Chen, J. S.
Acetone, isopropanol, and butanol production by Clostridium beijerinckii (syn. Clostridium butylicum) and Clostridium aurantibutyricum. Appl. Environ. Microbiol. 45, 1160~1163. (1983)
Ghosh, S., Conrad, J. R. and Klass.
Anaerobic acidogenesis of wastewater sludge, J. Wat. Poll. Cont. Fed. 47(1), 30~45. (1975)
Ghosh, S. and Klass, D. L.
Two-phase anaerobic digestion, Proc. Biochem. 13, 15~24. (1978)
Girbal, L., Croux, C., Vasconcelos, I. and Soucaille, P.
Transmembrane pH of Clostridium acetobutylicum is inverted (more acidic inside) when the in vivo activity of hydrogenase is decreased. J. Bacteriol. 176, 6146~6147. (1994)
Girbal, L., Croux, C., Vasconcelos, I. and Soucaille, P.
Regulation of metabolic shifts in Clostridum acetobutylicum ATCC 824. FEMS Microbiol. Rev. 17, 287~297. (1995)
Girbal, L. and Soucaille, P.
Regulation of solvent production in Clostridum acetobutylicum. Tibtech. 16, 11~16. (1998)
Gorwa, M. F., Croux, C. and Soucaille, P. Molecular characterization and transcriptional analysis of the putative hydrogenase gene of Clostridium acetobutylicum ATCC 824. J. Bacteriol. 178, 2668~2675. (1996)
Gottschalk, G.
Bacterial metabolism. 2nd Ed, Springer-Verlag New York Inc. (1985)
Harold, F. M. Conservation and transformation of energy by bacterial membranes, Bacterial. Rev. 36, 172~230. (1972)
Harold, F. M. and Papineau, D.
Cation transport and electrogenesis by Streptococus faecalis. I. The membrane potential. J. Membr. Boil. 8, 27~44. (1985)
Herbert, D., Philipps, P. J. and Strange, R. E. Carbonhydrate analysis. Methods Enzymol. 5B, 265~277. (1971)
Herrero, A. A., Gomez, R. F., Snedecor, B., Tolman, C. J. and Roberts , M. F.
Growth inhibition of Clostridium thermocellum by carboxylic acids:a mechanism based on uncoupling by weak acods. Appl. Microbiol. Biotechnol. 22, 53~62. (1985)
Heyndrickx, M., Vansteenbeeck, A., De Vos, P. and De Ley, J.
Hydrogen gas production from continuous fermentation of glucose in a minimal medium with Clostridum butyricum LMG 1213t1. System. Appl. Mircobiol. 8, 239~244. (1986)
Heyndrickx, M., De Vos, P., Thibau, B., Steven, P. and De Ley, J.
Effect of various external factors on the fermentative production of hydrogen gas from glucose by Clostridum butyricum strains in batch culture. System. Appl. Mircobiol. 9, 163~168. (1987)
Heyndrickx, M., De Vos, P. and De Ley, J.
H2 production from chemostat fermentation glucose by Clostridum butyricum and Clostridum pasteurinum in ammonium and phosphate limitation. Biotechnol. Lett. 12, 731~736. (1990)
Himes, R. H. and Rabinowitz, J. C. Formyltetrahydrofolate synthetase. II. Characteristics of enzyme and the enzymic reaction. J. Boil. Chem. 237, 2903~2914. (1962)
Häggström, L.
Kinetics of product formation in batch and continuous culture of Clostridium barkeri. Appl. Microbiol. Biotechnol. 23, 187~190. (1986)
Hüsemann, M. H. W. and Papoutsakis, E. T. Solventogenesis in Clostridum acetobutylicum fermentations related to carboxylic acid and proton concentrations. Biotechnol. Bioeng. 32 (7), 843~852. (1987)
Hüsemann, M. H. W. and Papoutsakis, E. T. Comparison between in vivo and in vitro enzyme activities in continuous and batch fermentations of Clostridum acetobutylicum. Appl. Microbiol. Biotechnol. 30, 585~595. (1989)
Jones, D. T. and Woods, D. R.
Acetone-butanol fermentation revisited. Microbiol. Rev. 50, 484~524. (1986)
Joseph, S., Terracciano and Kashket, E. R. Intracellur condition required for initiation of solvent production by Clostridum acetobutylicum. Appl. Microbiol. Biotechnol. 52, 86~91. (1986)
Junelles, A. M., Janati-Idrissi, R., Petitdemange, H. and Gay, R.
Iron effect onacetone butanol fermentation.
Curr. Microbiol. 17, 299~303. (1988)
Jungermann, K., Thauer, R. K., Leimenstoll, G. and Decker, K.
Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in saccharolytic clostridia. Biochim. Biophys. Acta. 305, 268~280. (1973)
Kaji, M., Taniguchi, Y., Matsushita, O., Katayama, S., Miyata, S., Morita, S. and Okabe, A.
The hydA gene encoding the H2-evolving hydrogenase of Clostridium perfringens: molecular characterization and expression of the gene. FEMS Microbiol. Lett. 181, 329~336. (1999)
Kaluzhnyi, S. V., Danilovich, D. A. and Nozhevnikova, A. N.
Anaerobic biological treatment of wastewaters. Itogi nauki i tekhnik. Biotechnol. Serium. 29, Moscow. (1991)
Kashket, E. R.
Stoichiometry of the H+-ATPase of growing and resting, aerobic Eschericha coli. Biochem. 21, 5534~5538. (1982)
Kataoka, N., Miya, A. and Kiriyama, K.
Studies on hydrogen production by continuous culture system of hydrogen producing anaerobic bacteria. Proc. of the 8th International Conference on anaerobic digestion. 2, 383~390. (1997)
Kawasaki, S., Nakagawa, T., Nishiyama, Y., Benno, Y., Uchimura, T. Komagata, K., Kozaki, M. and Nimura, Y.
Effect of oxygen in the groeth of Closrtridium butyricum ( type species of the genus Clostridium), and the distribution of enzymes for oxygen and for active oxygen species in Clostridia. J. Fement. Bioeng. 86, 368~372. (1998)
Kell, D. B., Peck, M. W., Rodger, G. and Morris, J. G.
On the permeability to weak acids and bases of the cytoplasmic membrane of Clostridium pasteurianum. Biochem. Biophhys. Res. Commun. 99, 81~88. (1981)
Khanal, S. K., Chen, W. H. Li, L. and Sung, S. Biological hydrogen production: effects of pH and intermediate products. Int. J. Hydrogen Energy. 29, 1123~1131. (2004)
Krulwich, T. A. and Guffanti, A. A.
Physiology of acidophilic and alkalophilic bacteria. Adv. Microb. Physiol. 24, 173~214. (1983)
Kutzenock, A. and Aschner, M.
Degenerative processes in a strain of Clostridium butylicum. J. Bacteriol. 64, 829~836. (1952)
Lay, J. J., Lee.
Modeling and optimization of anaerobic digested sludge converting stach to hydrogen. Biotechnol. Bioeng. 68, 262~278. (2000)
Lee, Y. J., Miyahara, T. and Noike, T.
Effects of pH on the microbial hydrogen fermentation. In: Proceedings of the 6th IAWQ Asian-Pacific Conference. Taipei, 215~220. (1999)
Lee, Y. J., Miyahara, T. and Noike, T.
Effect of ion concentration on hydrogen fermentation. Bioresour. Technol. 80. 227~231. (2001)
Lin, C. Y. and Lay, C. H.
Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. Int. J. Hydrogen Energy. 29, 41~45. (2004)
Ljungdahl, L. G., Hugenholtz, J. and Wiegel, J. Acetogenic and acid-producing bacteria. In: Biotechnology Handbooks: Clostridia, Minton, N. P. and Clarke, D. J. (Ed.), New York: Plenum Press. (1989)
Lomon, B. J. and Peter, J. W.
Binding of exogenously added carbon monoxide at active site of the Iron-only hydrogenase (CpI) from Clostridium pasteurianum. Biochem. 38, 12969~12973. (1999)
Lovitt, R. W., Shen, G. J. and Zeikus, J. G. Ethanol production by thermophlic bacteria: biochemical basic for ethanl and hydrogen tolerance in Clostridium thermohydrosulfuricum. J. Bacteriol. 170, 2809~2815. (1988)
McCarty, P. L.
Energetics and kinetics of anaerobic treatment, In: Anaerobic biological treatment processes, Gould, R. F. (ed.), Advan. Chem. Ser. 105, 91~107. (1971)
McCarty, P. L. and Mosey, F. E.
Modeling of anaerobic digestion processes (discussion of concepts). Water Sci. Technol. 24, 17~33. (1991)
McCoy, E. and Fred, E. B.
The stability of a culture for industrial fermentation. J. Bacteriol. 41, 90~91. (1941)
McInerney, M. J.
Anaerobic hydrohysis and fermentation of fats and proteins. In: Biology of anaerobic microorganisms, Zehnder, A. J. B. (ed.), New York: Wiely. (1988)
Michel-Savin, D., Marchal, R. and Vandecasteele, J. P.
Control of selectivity of butyric acid production and improvement of fermentation performance with Clostridum tyrobutyricum. Appl. Microbiol. Biotechnol. 32, 387~392. (1990)
Michel-Savin, D., Marchal, R. and Vandecasteele, J. P.
Butyrate production in continuous culture of Clostridum tyrobutyricum: effect of end-product inhibition. Appl. Microbiol. Biotechnol. 33, 127~131. (1990a)
Miyake, J.
Biohydrogen. Zaborsky et al. (eds), Plenum Press, New York. (1998)
Monot, F., Engasser, J. M. and Petitdemange, H. Influence of pH and undissociated butyric acid on the production of acetone and butanol in batch cultures of Clostridum acetobutylicum. Appl. Microbiol. Biotechnol. 19, 422~426. (1984)
Mizuno, O., Dinsdale, R., Hawkes, F. R., Hawkes, D. L. and Noike, T.
Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour. Technol. 73, 59~65. (2000)
Niel, E. W., Claassen, P. A. M. and Stams, A. J. M.
Substrate and product inhibition of hydrogen production by extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol. Bioeng. 81, 255~262. (2003)
Nochur, S. V., Demain, A. L. and Roberts, M. F. Carbohydrate utilization by Clostridium thermocellum:importance of internal in pH in regulating growth. Enzyme Microb. Technol. 14, 338~349. (1992)
Noguera, D. R., Araki, N., and Rittmann, B. E. Soluble microbial products (SMP) in anaerobic chemostats. Biotechnol. Bioeng. 44, 1040~1047. (1992)
O’Brien, R. W. and Morris, J. G.
Oxygen and growth and metabolism of Clostridium acetobutylicum. J. Gen. Microbiol. 68, 307~318. (1971)
Owen, W. F., Stuckey, D. C., Jr., Herly, J. B., Young, L. Y. and MaCarty P. L.
Bioassay for monitoring biochemical methane potential and aanaerobic toxicity. Wat. Res. 13, 485~492. (1979)
Padan, E., Zilberstein, D. and Rottenberg. H. The proton elecrochemical gradient in Escherichia coli. Eur. J. Biochem. 63, 533~541. (1976)
Padan, E., Zilberstein, D. and Schuldiner, S.
pH homeostasis in bacteria. Biochim. Biophys. Acta. 650, 151~166. (1981)
Payne, M. J., Chanpman, A. and Cammack, R. Evidence for an [Fe]-type hydrogenase in the parasitic protozoan Trichomonas vaginalis. FEBS Lett. 317, 101~104. (1993)
Peguin, S. and Soucaille, P.
Modulation of carbon and electron flow in Clostridium acetobutylicum by iron limition and methyl viologen addition. Appl. Environ. Microbiol. 61, 403~405. (1995)
Peter, J. W., Lanzilotta, W. N., Lemon, B. J. and Seefeldt, L. C.
X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Sci. 282, 1853~1858. (1998)
Peter, J. W.
Structure and mechanism of Iron-only hydrogenase. Current Opinion in Structural Biology. 9, 670~676. (1999)
Reichert, P.
Concepts underlying a computer program for the identification and simulation of aquatic systems, Schriftenreihe der EAWAG Nr. 7. Swiss Federal Institute for Environmental Science and Technology (EAWAG), CH-8600 Dübendorf, Switzerland. Sykes, R. M. 1975. Theoretical heterotrophic yields. J. Wat. Poll. Cont. Fed. 47, 591~600. (1994)
Ren, N., Wang, B. and Ma, F.
Hydrogen bio-production of carbonhydrate fermentation by anaerobic sludge process. In: Proceedings 68th Annual Water environmental Federal Conference. Miami, 145~152. (1995)
Riebeling, V., Thauer, R. K. and Jungermann, K. The internal alkaline pH gradient, sensitive to uncoupler and ATPase inhibitor, in growing cells of Clostridium pasteurianum. Eur. J. Biochem. 55, 455~453. (1975)
Robson, R.
Biodiversity of hydrogenase. In: Hydrogen as a fuel: learning from nature, Commack, R., Frey, M., Robson, R. (ed.), Taylor & Francis, London and New York. (2001)
Roger, P.
Genetics and biochemistry of Clostridium relevant to development of fermentation processes. Appl. Microbiol. 31, 1~60. (1984)
Schoenheit, P., Brandis, A. and Thauer, R. K. Ferredoxin degradation in growing Clostridium pasteuriamun during periods of iron deprivation. Arch. Microbiol. 120, 73~76. (1979)
Schwartz, R. D. and Keller F. A.
Acetic acid production by Clostridium themoacetium in pH-controlled batch fermentations at acidic pH. Appl. Environ. Microbiol. 43, 1385~1392. (1982)
Sjolander, N. O. and McCoy, E.
Studies on anaerobic bacteria. A cultural study of some “butyric” anaerobic previously described in the literature. Zentralbl. Bakteriol. Parasitenkd. Infektionsk. Hyg. Abt. 2. 97, 314~324. (1937)
Tanisho, S., Kaniya, N. and Wakao, N.
Hydrogen evolution of Enterobacter aerogen depending on culture pH: mechanism of hydrogen evolution from NADH by means of membrane-bond hydrogenase. Biochim. Biophys. Acta. 973, 1~6. (1989)
Taguchi, F., Chang, J. D., Mizukami, N., Saito-Taki, T. and Hasegawa, K.
Isolation of a hydrogen-producing bacterium, Clostridum beijerinckii strain AM21B from termites. Can. J. Microbiol. 39, 726~730. (1993)
Taguchi, F., Chang, J. D., Mizukami, N., Saito-Taki, T. and Hasegawa, K.
Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. strain No 2. Can. J. Microbiol. 41: 536-540. (1995)
Terracciano, J. S., Schreurs, W. J. A. and Kashket, E. R.
Membrance H+ conductance of Clostridium thermoaceticum and Clostridium acetobutylicum: evidence for electrogenic Na+/H+ antiport in Clostridium thermoaceticum. Appl. Environ. Microbiol. 53, 782~786. (1987)
Thauer, R. K., Kleun, A. R. and Hartmann, G. C. Reactions with molecular hydrogen in microorganisms:evidence for a purely organic hydrogenation catalyst. Chem. Rev. 96, 3031~3042. (1996)
Thauer, R. K., Jungermann, K., and Decker, K. Energy conservation in chemotrophic anaerobes. Bacteriol. Rev. 41, 100~180. (1977)
Ueno, Y., Kawai, T., Sato, S., Otsuka, S. and Morimoto, M.
Biological production of hydrogen from cellulose by natural anaerobic microflora. J. Ferment. Bioeng. 79, 395~397. (1995)
Ueno, Y., Haruta, S., Ishii, M. and Igarashi, Y. Microbial community in anaerobic hydrogen-producing micrpflora wnriched from sludge compost. Appl. Microbiol. Biotechnol. 57, 555~562. (2001)
Van Andel, J. G., Zoutberg, G. R., Crabbendam, P. M. and Breure, A. M.
Glucose fermentations by Clostridium butyricum grown under a self generated gas atmosphere in chemostat culture. Appl. Environ. Biotechnol. 23, 21~26. (1985)
Van Ginkel, S., and Sung, S.
Biohydrogen production as a function of pH and substrate concentration. Environ. Sci. Technol. 35, 4726~4730. (2001)
Van Ginkel, S. and Logan, B.
Inhibition of biohydrogen production by undissociated acetic and butyric acids. Erviron. Sci. Technol. 39, 9351~9356. (2005)
Van Ginkel, S. and Logan, B.
Increased biological hydrogen production with reduced organic loading. Water Res. 39, 3819-3826. (2005a)
Vasconcelos, I., Girbal, L. and Soucaille, P. Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J. Bacteriol. 176, 1143~1150. (1994)
Vavilin, V. A., Vasiliev, V. B., Ponomarev, A. V. and Rytov, S. V.
Simulation model 'Methane' as a tool for effective biogas production during anaerobic conversion of complex organic matter. Biores. Technol. 48, 1~8. (1994)
Wachsman, J. T. and Barker, H. A.
The accumulation of formamide during the fermentation of histidine by Clostridium tetanomorphum. J. Bacteriol. 69,83~88. (1955)
Wang, G. and Wang, D. I. C.
Elucidation of growth inhibition and acetic acid production by Clostridum thermoaceticum. Appl. Environ. Microbiol. 47, 294~298. (1984)
Yokoi, H., Ohkawa, T., Hirose, J., Hayashi, S. and Takasaki, Y.
Characteristics of hydrogen production by acid uric Enterobacter areogen strain HO-39. J. Ferment. Bioeng. 80, 571~574. (1995)
Yokoi, H., Mori, S., Hirose, J., Hayashi, S. and Takasaki, Y.
H2 production from starch by a mixed culture of Clostridum butyricum and Rhodobacter sp M-19. Biotechnol. Lett. 20, 895~899. (1998)
Zellner, G., Neudorfer, F. and Diekmann, H. Degradation of lactate by an anaerobic culture in a fluidized-bed reactor. Water Res. 28, 1337~1340. (1994)
Zheng, X. J. and Yu, H. Q.
Roles of pH in Biologic production of hydrogen and volatile fatty acids from glucose by enriched anaerobic cultures. Appl. Biochem. Biotechnol. 112, 79~90. (2004)
Zoetemeyer, R. J., Matthijse, A. J. C. M., Cohen, A. and Boelhouwer, C.
Product inhibition in the acid forming stage of the anaerobic digestion process. Water Res. 16, 633~639. (1982)