| 研究生: |
冉茂廷 Jan, Mao-Ting |
|---|---|
| 論文名稱: |
利用疏水/親油分離膜集油井分離水在油中乳液及其應用 Application of hydrophobic/oleophilic membranes for W/O emulsions separation by using oil collection well |
| 指導教授: |
楊毓民
Yang, Yu-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 疏水/親油分離膜 、水在油中乳液 、乳液特性 、集油井設計 、乳液分離理論預測 |
| 外文關鍵詞: | Hydrophobic/oleophilic (HO/OI) membrane, Water-in-oil (W/O) emulsions, Oil collection well design, Modeling of emulsions separation |
| 相關次數: | 點閱:42 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用高分子材料製備具疏水/親油潤濕性質之分離膜,其中,分別採用水性塗佈聚四氟乙烯(PTFE)奈米粒子於聚酯纖維(PET)紡織品上的方法,以及靜電紡絲製備聚偏氟乙烯(PVDF)膜的方法,比較兩者特性後,後者具備高效率與重複使用性等優勢。利用兩種分離膜分離水在油中的乳液,油相選用密度與黏度差異較大的甲苯和正十六烷,並且利用兩種製備乳液的方法,使用市場上常用的動態雷射光散射儀(DLS)來定量表現水在油中乳液的平均粒徑(Average diameter)、多分散指數(Polydisperse index)、每單位時間接收器所接收到的光子數目(Derive count rate)等乳液特性,藉由原位(in-situ)集油井裝置成功分離水在油乳液與評估乳液中油相通過疏水/親油膜的分離通量。此外,與膜的固有阻力(RM)一同討論,引入額外膜阻力(RF)作為重要參數,以此方式數值化乳液分離過程中水滴阻擋在膜上產生的額外阻力,建立了水在油中乳液分離的理論模型,成功描述乳液分離行為;並進一步發展RF與乳液特性之間的冪次方關聯式。結果顯示,實驗和理論模型的誤差範圍在±20%內。
In this study, Hydrophobic/Oleophilic (HO/OI) separation membranes were prepared by using polymer materials. Two methods were employed: water-borne dip coating of polytetrafluoroethylene (PTFE) nanoparticles on polyester fiber textiles, and electrospinning of polyvinylidene fluoride (PVDF) membranes. The membranes were utilized for separating water-in-oil (W/O) emulsions, with toluene and hexadecane as the oil phases. The average parameters, polydisperse index, and derived count rate of the W/O emulsions were quantitatively characterized using Dynamic Light Scattering (DLS) as commonly instruments. The separation flux of the oil phase through the HO/OI membranes was evaluated using an in-situ oil collection well (OCW) device. Additionally, the resistance of membrane fouling (RF) parameter was defined to describe the additional resistance caused by water droplets fouling on the membranes, and it was discussed together with the intrinsic resistance of the membranes (RM). A theoretical model was developed to describe the separation of water-in-oil emulsions, and a correlation between RF and above-mentioned emulsion properties was established. A good correlation within ± 20% error between the experimental and predicted RF was found.
[1] Y. X. Wu, and J. Y. Xu, “Oil and water separation technology,” Advances in Mechanics, vol. 45, pp. 180-216, 2015.
[2] D. T. Gong, Y. X. Wu, Z. C. Zheng, J. Guo, J. Zhang, and C. Tang, “Numerical simulation of the oil-water two-phase flow in a helical tube with variable mass flow rates.,” Journal of Hydrodynamics, vol. 21, no. 5, pp. 641-645, 2006.
[3] N. Nadarajah, A. Singh, and O. P. Ward, “Evaluation of a mixed bacterial culture for de-emulsification of water-in-petroleum oil emulsions,” World Journal of Microbiology & Biotechnology, vol. 18, pp. 435–440, 2002.
[4] G. Kwon, E. Post, and A. Tuteja, “Membranes with selective wettability for the separation of oil-water mixtures,” MRS Communications, vol. 5, no. 3, pp. 475-494, 2015.
[5] R. K. Gupta, G. J. Dunderdale, M. W. England, and A. Hozumi, “Oil/water separation techniques: a review of recent progresses and future directions,” Journal of Materials Chemistry A, vol. 5, no. 31, pp. 16025-16058, 2017.
[6] W. Barthlott, and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surface,” Planta, vol. 202, pp. 1-8, 1997.
[7] C. Neinhuis, and W. Barthlott, “Characterization and distribution of water-repellent, self-cleaning plant surfaces,” Annals of Botany, vol. 79, pp. 667–677, 1997.
[8] S. Li, J. Huang, Z. Chen, G. Chen, and Y. Lai, “A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications,” Journal of Materials Chemistry A, vol. 5, no. 1, pp. 31-55, 2017.
[9] Z. Chu, and S. Seeger, “Superamphiphobic surfaces,” Chemical Society Reviews, vol. 43, no. 8, pp. 2784-98, 2014.
[10] J. Zimmermann, S. Seeger, and F. A. Reifler, “Water shedding angle: a new technique to evaluate the water-repellent properties of superhydrophobic surfaces,” Textile Research Journal, vol. 79, no. 17, pp. 1565-1570, 2009.
[11] R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” Industrial & Engineering Chemistry, vol. 28, no. 8, pp. 988-994, 1936.
[12] X. Liu, Y. Liang, F. Zhou, and W. Liu, “Extreme wettability and tunable adhesion: biomimicking beyond nature?,” Soft Matter, vol. 8, no. 7, pp. 2070-2086, 2012.
[13] E. Bormashenko, R. Grynyov, G. Chaniel, H. Taitelbaum, and Y. Bormashenko, “Robust technique allowing manufacturing superoleophobic surfaces,” Applied Surface Science, vol. 270, pp. 98-103, 2013.
[14] X. J. Feng, and L. Jiang, “Design and creation of superwetting/ antiwetting surfaces,” Advanced Materials, vol. 18, no. 23, pp. 3063-3078, 2006.
[15] A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, “Designing superoleophobic surfaces,” Science, vol. 318, no. 5856, pp. 1618-1622, 2007.
[16] J. Bico, U. Thiele, and D. Quéré, “Wetting of textured surfaces,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 206, no. 1, pp. 41-46, 2002.
[17] E. W. Washburn, “Note on a method of determining the distribution of pore sizes in a porous material,” Proceedings of the national academy of sciences, vol. 7, no. 4, pp. 115-116, 1921.
[18] D. Deng, D. P. Prendergast, J. MacFarlane, R. Bagatin, F. Stellacci, and P. M. Gschwend, “Hydrophobic meshes for oil spill recovery devices,” ACS Apply Material Interfaces, vol. 5, no. 3, pp. 774-81, 2013.
[19] M. Huang, Y. Si, X. Tang, Z. Zhu, B. Ding, L. Liu, G. Zheng, W. Luo, and J. Yu, “Gravity driven separation of emulsified oil–water mixtures utilizing in situ polymerized superhydrophobic and superoleophilic nanofibrous membranes,” Journal of Materials Chemistry A, vol. 1, no. 45, pp. 14071-14074, 2013.
[20] Z. Shi, W. Zhang, F. Zhang, X. Liu, D. Wang, J. Jin, and L. Jiang, “Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films,” Advanced Materials, vol. 25, no. 17, pp. 2422-7, 2013.
[21] Y. Cao, Y. Chen, N. Liu, X. Lin, L. Feng, and Y. Wei, “Mussel-inspired chemistry and Stöber method for highly stabilized water-in-oil emulsions separation,” Journal of Materials Chemistry A, vol. 2, no. 48, pp. 20439-20443, 2014.
[22] C. Cao, M. Ge, J. Huang, S. Li, S. Deng, S. Zhang, Z. Chen, K. Zhang, S. S. Al-Deyab, and Y. Lai, “Robust fluorine-free superhydrophobic PDMS–ormosil@fabrics for highly effective self-cleaning and efficient oil–water separation,” Journal of Materials Chemistry A, vol. 4, no. 31, pp. 12179-12187, 2016.
[23] E. C. Cho, C.W. Chang-Jian, Y. S. Hsiao, K. C. Lee, and J. H. Huang, “Interfacial engineering of melamine sponges using hydrophobic TiO2 nanoparticles for effective oil/water separation,” Journal of the Taiwan Institute of Chemical Engineers, vol. 67, pp. 476-483, 2016.
[24] S. Lei, Z. Shi, J. Ou, F. Wang, M. Xue, W. Li, G. Qiao, X. Guan, and J. Zhang, “Durable superhydrophobic cotton fabric for oil/water separation,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 533, pp. 249-254, 2017.
[25] W. Zhang, N. Liu, Y. Cao, X. Lin, Y. Liu, and L. Feng, “Superwetting porous materials for wastewater treatment: from immiscible oil/water mixture to emulsion separation,” Advanced Materials Interfaces, vol. 4, no. 10, pp. 1700029(1-18), 2017.
[26] V. Singh, Y. J. Sheng, and H. K. Tsao, “Facile fabrication of superhydrophobic copper mesh for oil/water separation and theoretical principle for separation design,” Journal of the Taiwan Institute of Chemical Engineers, vol. 87, pp. 150-157, 2018.
[27] X. Bai, Z. Zhao, H. Yang, and J. Li, “ZnO nanoparticles coated mesh with switchable wettability for on-demand ultrafast separation of emulsified oil/water mixtures,” Separation and Purification Technology, vol. 221, pp. 294-302, 2019.
[28] Y. Liang, S. Kim, P. Kallem, and H. Choi, “Capillary effect in Janus electrospun nanofiber membrane for oil/water emulsion separation,” Chemosphere, vol. 221, pp. 479-485, 2019.
[29] Y. Pan, L. Liu, Z. Zhang, S. Huang, Z. Hao, and X. Zhao, “Surfaces with controllable super-wettability and applications for smart oil-water separation,” Chemical Engineering Journal, vol. 378, pp.122178 (1-8), 2019.
[30] Y. Wang, M. Wang, J. Wang, H. Wang, X. Men, and Z. Zhang, “A rapid, facile and practical fabrication of robust PDMS@starch coatings for oil-water separation,” Journal of the Taiwan Institute of Chemical Engineers, vol. 99, pp. 215-223, 2019.
[31] D. D. Ejeta, C. F. Wang, S. W. Kuo, J. K. Chen, H. C. Tsai, W. S. Hung, C. C. Hu, and J. Y. Lai, “Preparation of superhydrophobic and superoleophilic cotton-based material for extremely high flux water-in-oil emulsion separation,” Chemical Engineering Journal, vol. 402, pp. 126289 (1-10), 2020.
[32] Y. Deng, C. Peng, M. Dai, D. Lin, I. Ali, S. S. Alhewairini, X. Zheng, G. Chen, J. Li, and I. Naz, “Recent development of super-wettable materials and their applications in oil-water separation,” Journal of Cleaner Production, vol. 266, pp. 121624 (1-26) 2020.
[33] J. Wu, X. Zhao, C. Tang, J. Lei, and L. Li, “One-step dipping method to prepare inorganic-organic composite superhydrophobic coating for durable protection of magnesium alloys,” Journal of the Taiwan Institute of Chemical Engineers, vol. 135, pp. 104364 (1-8) 2022.
[34] F. Liu, N. A. Hashim, Y. Liu, M. R. M. Abed, and K. Li, “Progress in the production and modification of PVDF membranes,” Journal of Membrane Science, vol. 375, no. 1-2, pp. 1-27, 2011.
[35] N. Wang, K. Burugapalli, W. Song, J. Halls, F. Moussy, Y. Zheng, Y. Ma, Z. Wu, and K. Li, “Tailored fibro-porous structure of electrospun polyurethane membranes, their size-dependent properties and trans-membrane glucose diffusion,” Journal of Membrane Science, vol. 427, pp. 207-217, 2013.
[36] W. Zhang, Z. Shi, F. Zhang, X. Liu, J. Jin, and L. Jiang, “Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux,” Advanced Materials, vol. 25, no. 14, pp. 2071-2076, 2013.
[37] K. G. Tamberg, “Effect of electrospinning conditions on morphology of PVDF fibers,” Technology of Materials curricular KAOB, pp. 1-33, 2014.
[38] J. Wu, Y. Ding, J. Wang, T. Li, H. Lin, J. Wang, and F. Liu, “Facile fabrication of nanofiber- and micro/nanosphere-coordinated PVDF membrane with ultrahigh permeability of viscous water-in-oil emulsions,” Journal of Materials Chemistry A, vol. 6, no. 16, pp. 7014-7020, 2018.
[39] Ç. Akduman, “Mikrofiltrasyon için elektrolif çekim yöntemi ile üretilmiş PVDF nanolifli membranlar: Gözenek boyutu ve kalınlığının membran performansına etkisi,” European Journal of Science and Technology, pp. 247-255, 2019.
[40] M. Wang, J. Hu, Y. Wang, and Y. T. Cheng, “The influence of polyvinylidene fluoride (PVDF) binder properties on LiNi0.33Co0.33Mn0.33O2(NMC) electrodes made by a dry-powder-coating process,” Journal of The Electrochemical Society, vol. 166, no. 10, pp. 2151-2157, 2019.
[41] K. Castkova, J. Kastyl, D. Sobola, J. Petrus, E. Stastna, D. Riha, and P. Tofel, “Structure-properties relationship of electrospun PVDF fibers,” Nanomaterials (Basel), vol. 10, no. 6, pp. 1221 (1-19), 2020.
[42] P. K. Szewczyk, and U. Stachewicz, “The impact of relative humidity on electrospun polymer fibers: from structural changes to fiber morphology,” Advances in Colloid and Interface Science, vol. 286, pp. 102315 (1-23), 2020.
[43] Z. He, F. Rault, M. Lewandowski, E. Mohsenzadeh, and F. Salaun, “Electrospun PVDF nanofibers for piezoelectric applications: A review of the influence of electrospinning parameters on the beta phase and crystallinity enhancement,” Polymers (Basel), vol. 13, no. 2, pp. 174 (1-23), 2021.
[44] D. Mailley, A. Hébraud, and G. Schlatter, “A review on the impact of humidity during electrospinning: from the nanofiber structure engineering to the applications,” Macromolecular Materials and Engineering, vol. 306, no. 7, pp. 2100115 (1-25), 2021.
[45] J. E. Marshall, A. Zhenova, S. Roberts, T. Petchey, P. Zhu, C. E. J. Dancer, C. R. McElroy, E. Kendrick, and V. Goodship, “On the solubility and stability of polyvinylidene fluoride,” polymers (Basel), vol. 13, no. 9, pp. 1354 (1-31), 2021.
[46] S. Oh, S. Ki, S. Ryu, M. C. Shin, J. Lee, C. Lee, and Y. Nam, “Performance analysis of gravity-driven oil-water separation using membranes with special wettability,” Langmuir, vol. 35, no. 24, pp. 7769-7782, 2019.
[47] E. Coene, O. Silva, and J. Molinero, “A numerical model for the performance assessment of hydrophobic meshes used for oil spill recovery,” International Journal of Multiphase Flow, vol. 99, pp. 246-256, 2018.
[48] Y. T. Lim, N. Han, W. Jang, W. Jung, M. Oh, S. W. Han, H. Y. Koo, and W. S. Choi, “Surface design of separators for oil/water separation with high separation capacity and mechanical stability,” Langmuir, vol. 33, no. 32, pp. 8012-8022, 2017.
[49] D. C. Tanugi, and J. C. Grossman, “Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination,” The Journal of Chemical Physics, vol. 141, no. 7, pp. 074704 (1-5), 2014.
[50] Z. Shi, W. Zhang, F. Zhang, X. Liu, D. Wang, J. Jin, and L. Jiang, “Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films,” Advanced Materials, vol. 25, no. 17, pp. 2422-2427, 2013.
[51] X. Peng, J. Jin, Y. Nakamura, T. Ohno, and I. Ichinose, “Ultrafast permeation of water through protein-based membranes,” Nature Nanotechnology, vol. 4, no. 6, pp. 353-357, 2009.
[52] R. W. Baker, Membrane technology and applications, second edition John Wiley & Sons, Ltd, 2012.
[53] T. Mohammad, M. Kazemimoghadam, and M. Saadabadi, “Modeling of membrane fouling and flux decline in reverse osmosis during separation of oil in water emulsions,” Desalination, vol. 157, pp. 369-375, 2003.
[54] E. Iritani, and N. Katagiri, “Developments of blocking filtration model in membrane filtration,” KONA Powder and Particle Journal, vol. 33, pp. 179-202, 2016.
[55] M. J. Corbatón-Báguena, M. C. Vincent-Vela, J. M. Gozálvez-Zafrilla, S. Álvarez-Blanco, J. Lora-García, and D. Catalán-Martínez, “Comparison between artificial neural networks and Hermia’s models to assess ultrafiltration performance,” Separation and Purification Technology, vol. 170, pp. 434-444, 2016.
[56] A. Salahi, M. Abbasi, and T. Mohammadi, “Permeate flux decline during UF of oily wastewater: Experimental and modeling,” Desalination, vol. 251, no. 1-3, pp. 153-160, 2010.
[57] T. Zhang, J. Zhang, Q. Wang, H. Zhang, Z. Wang, and Z. Wu, “Evaluating of the performance of natural mineral vermiculite modified PVDF membrane for oil/water separation by membrane fouling model and XDLVO theory,” Journal of Membrane Science, vol. 641, pp.119886 (1-12), 2022.
[58] S. Y. Luo, L. W. Huang, C. Y. Hsieh, and Y. M. Yang, “Performance characterization of hydrophobic/oleophilic fabric membranes for stratified oil-water separation,” Applied Physics A, vol. 128, no. 1, pp. 22 (1-12), 2021.
[59] S. Y. Luo, L. W. Huang, M. T. Jan, and Y. M. Yang, “Designing collection well for oil spill cleanup and recovery by using hydrophobic/oleophilic fabric membranes,” London Journal of Research in Science: Natural and Formal, vol. 22, no. 13, pp. 19-33, 2022.
[60] J. Wei, C. Qiu, C. Y. Tang, R. Wang, and A. G. Fane, “Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes,” Journal of Membrane Science, vol. 372, no. 1-2, pp. 292-302, 2011.
[61] 謝承鎰, “疏水/親油紡織品分離膜的油-水乳液分離機制之探討,"成功大學化學工程學系學位論文, 2020.