簡易檢索 / 詳目顯示

研究生: 冉茂廷
Jan, Mao-Ting
論文名稱: 利用疏水/親油分離膜集油井分離水在油中乳液及其應用
Application of hydrophobic/oleophilic membranes for W/O emulsions separation by using oil collection well
指導教授: 楊毓民
Yang, Yu-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 128
中文關鍵詞: 疏水/親油分離膜水在油中乳液乳液特性集油井設計乳液分離理論預測
外文關鍵詞: Hydrophobic/oleophilic (HO/OI) membrane, Water-in-oil (W/O) emulsions, Oil collection well design, Modeling of emulsions separation
相關次數: 點閱:42下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用高分子材料製備具疏水/親油潤濕性質之分離膜,其中,分別採用水性塗佈聚四氟乙烯(PTFE)奈米粒子於聚酯纖維(PET)紡織品上的方法,以及靜電紡絲製備聚偏氟乙烯(PVDF)膜的方法,比較兩者特性後,後者具備高效率與重複使用性等優勢。利用兩種分離膜分離水在油中的乳液,油相選用密度與黏度差異較大的甲苯和正十六烷,並且利用兩種製備乳液的方法,使用市場上常用的動態雷射光散射儀(DLS)來定量表現水在油中乳液的平均粒徑(Average diameter)、多分散指數(Polydisperse index)、每單位時間接收器所接收到的光子數目(Derive count rate)等乳液特性,藉由原位(in-situ)集油井裝置成功分離水在油乳液與評估乳液中油相通過疏水/親油膜的分離通量。此外,與膜的固有阻力(RM)一同討論,引入額外膜阻力(RF)作為重要參數,以此方式數值化乳液分離過程中水滴阻擋在膜上產生的額外阻力,建立了水在油中乳液分離的理論模型,成功描述乳液分離行為;並進一步發展RF與乳液特性之間的冪次方關聯式。結果顯示,實驗和理論模型的誤差範圍在±20%內。

    In this study, Hydrophobic/Oleophilic (HO/OI) separation membranes were prepared by using polymer materials. Two methods were employed: water-borne dip coating of polytetrafluoroethylene (PTFE) nanoparticles on polyester fiber textiles, and electrospinning of polyvinylidene fluoride (PVDF) membranes. The membranes were utilized for separating water-in-oil (W/O) emulsions, with toluene and hexadecane as the oil phases. The average parameters, polydisperse index, and derived count rate of the W/O emulsions were quantitatively characterized using Dynamic Light Scattering (DLS) as commonly instruments. The separation flux of the oil phase through the HO/OI membranes was evaluated using an in-situ oil collection well (OCW) device. Additionally, the resistance of membrane fouling (RF) parameter was defined to describe the additional resistance caused by water droplets fouling on the membranes, and it was discussed together with the intrinsic resistance of the membranes (RM). A theoretical model was developed to describe the separation of water-in-oil emulsions, and a correlation between RF and above-mentioned emulsion properties was established. A good correlation within ± 20% error between the experimental and predicted RF was found.

    摘要 I Extended Abstract II 致謝 XII 目錄 XIV 表目錄 XX 圖目錄 XXII 符號 XXVIII 第一章 緒論 1 1.1 前言 1 1.2 研究背景與動機 1 1.3 研究目標 2 第二章 文獻回顧 3 2.1 傳統油-水分離方法 3 2.1.1 物理方法 3 2.1.2 化學方法 6 2.1.3 物理化學方法 7 2.1.4 生物方法 8 2.2 特殊濕潤性質 9 2.2.1 蓮花效應 11 2.2.2 超疏水表面之表徵 14 2.2.3 楊氏(Young)方程式 16 2.2.4 溫佐(Wenzel)方程式 17 2.2.5 卡西-巴斯特(Cassie and Baxter)方程式 18 2.2.6 介於溫佐及卡西-巴斯特之過度狀態 19 2.2.7 突破壓力(intrusion pressure) 21 2.3 基於特殊濕潤性質之油-水分離應用 22 2.3.1 超疏水/超親油表面製備 23 2.3.2 利用疏水/親油表面分離油水乳液 24 2.4 分離通量評估 34 2.4.1 Hagen-Poiseuille equation 34 2.4.2 Blocking filtration model 37 第三章 模型建立 42 3.1 集油井裝置模型 42 3.1.1 分層油體分離模型 42 3.1.2 水在油乳液分離模型 45 3.1.3 水在油乳液分離機制探討 46 3.2 垂直裝置模型 47 第四章 實驗內容 49 4.1 實驗材料 49 4.2 儀器設備與裝置 50 4.2.1 Milli-Q超純水系統 50 4.2.2 加熱攪拌器 (Hot plate stirrer) 51 4.2.3 超音波震盪槽 (Ultrasonicator) 51 4.2.4 均質機 (Homogenizer) 52 4.2.5 箱型高溫爐 (Muffle furnace) 53 4.2.6 濁度計 (Turbidimeter) 53 4.2.7 掃描式電子顯微鏡 (Scanning electron microscope) 54 4.2.8 接觸角分析儀 (Contact angle measure analyzer) 55 4.2.9 動態雷射光散射儀 (Dynamic Light Scattering, DLS) 57 4.3 實驗架構 58 4.4 實驗方法 59 4.4.1 聚酯纖維紡織品基材前處理 59 4.4.2 鐵氟龍分散液製備 60 4.4.3 利用浸鍍法來製備疏水/親油聚酯纖維紡織品分離膜 60 4.4.4 聚偏二氟乙烯PVDF靜電紡絲前處理 60 4.4.5 利用靜電紡絲來製備疏水/親油PVDF分離膜 61 4.4.6 接觸角量測 62 4.4.7 突破壓力量測 63 4.4.8 利用集油井裝置進行分層的油-水分離與評估膜阻力(RM) 63 4.4.9 利用垂直裝置評估分離膜的阻力(RM) 64 4.4.10 水在甲苯中乳液的製備與量測 65 4.4.11 水在正十六烷中乳液的製備與量測 65 4.4.12 利用集油井裝置進行油水乳液分離與評估阻力(RF) 66 第五章 結果與討論 67 5.1 PET紡織品塗佈PTFE之疏水/親油分離膜的製備 67 5.1.1 PET紡織品塗佈PTFE膜之潤濕性質 67 5.1.2 PET紡織品塗佈PTFE膜之突破壓力 69 5.1.3 PET紡織品塗佈PTFE膜之孔隙度 70 5.2 靜電紡絲之PVDF疏水/親油分離膜的製備 71 5.2.1 靜電紡絲PVDF膜之潤濕性質 71 5.2.2 靜電紡絲PVDF膜之SEM照片 71 5.2.3 靜電紡絲PVDF膜之突破壓力 72 5.2.4 靜電紡絲PVDF膜之孔隙度 73 5.3 紡織品塗佈PTFE與靜電紡絲PVDF之特徵阻力測定 73 5.3.1 利用集油井裝置測定RM 73 5.3.2 利用垂直裝置測定RM 75 5.3.3 利用特徵膜阻力RM評估膜的再使用性 77 5.4 水在甲苯乳液之製備 79 5.4.1 震盪槽製備之無乳化劑水在甲苯乳液之性質 79 5.4.2 震盪槽製備之含乳化劑水在甲苯乳液之性質 83 5.4.3 均質軸製備之水在甲苯乳液之性質 87 5.5 水在正十六烷乳液之製備 90 5.5.1 震盪槽製備之水在正十六烷乳液之性質 90 5.5.2 均質軸製備之水在正十六烷乳液之性質 91 5.6 擬似油體 ( Pseudo-liquid oil ) 概念 93 5.7 利用PET-PTFE分離膜分離水在油乳液 94 5.8 利用PVDF分離膜分離水在油乳液 96 5.8.1 震盪槽製備之水在甲苯乳液分離 96 5.8.2 均質軸製備之水在甲苯乳液分離 100 5.8.3 均質軸水在正十六烷乳液分離 102 5.9 乳液分離預測及模型驗證 104 5.9.1 最小平方法 104 5.9.2 利用雙曲線遞減函數擬合乳液分離 105 5.9.3 利用水在油乳液性質預測RF 113 第六章 結論與建議 117 6.1 結論 117 6.2 建議 121 第七章 參考文獻 122

    [1] Y. X. Wu, and J. Y. Xu, “Oil and water separation technology,” Advances in Mechanics, vol. 45, pp. 180-216, 2015.
    [2] D. T. Gong, Y. X. Wu, Z. C. Zheng, J. Guo, J. Zhang, and C. Tang, “Numerical simulation of the oil-water two-phase flow in a helical tube with variable mass flow rates.,” Journal of Hydrodynamics, vol. 21, no. 5, pp. 641-645, 2006.
    [3] N. Nadarajah, A. Singh, and O. P. Ward, “Evaluation of a mixed bacterial culture for de-emulsification of water-in-petroleum oil emulsions,” World Journal of Microbiology & Biotechnology, vol. 18, pp. 435–440, 2002.
    [4] G. Kwon, E. Post, and A. Tuteja, “Membranes with selective wettability for the separation of oil-water mixtures,” MRS Communications, vol. 5, no. 3, pp. 475-494, 2015.
    [5] R. K. Gupta, G. J. Dunderdale, M. W. England, and A. Hozumi, “Oil/water separation techniques: a review of recent progresses and future directions,” Journal of Materials Chemistry A, vol. 5, no. 31, pp. 16025-16058, 2017.
    [6] W. Barthlott, and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surface,” Planta, vol. 202, pp. 1-8, 1997.
    [7] C. Neinhuis, and W. Barthlott, “Characterization and distribution of water-repellent, self-cleaning plant surfaces,” Annals of Botany, vol. 79, pp. 667–677, 1997.
    [8] S. Li, J. Huang, Z. Chen, G. Chen, and Y. Lai, “A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications,” Journal of Materials Chemistry A, vol. 5, no. 1, pp. 31-55, 2017.
    [9] Z. Chu, and S. Seeger, “Superamphiphobic surfaces,” Chemical Society Reviews, vol. 43, no. 8, pp. 2784-98, 2014.
    [10] J. Zimmermann, S. Seeger, and F. A. Reifler, “Water shedding angle: a new technique to evaluate the water-repellent properties of superhydrophobic surfaces,” Textile Research Journal, vol. 79, no. 17, pp. 1565-1570, 2009.
    [11] R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” Industrial & Engineering Chemistry, vol. 28, no. 8, pp. 988-994, 1936.
    [12] X. Liu, Y. Liang, F. Zhou, and W. Liu, “Extreme wettability and tunable adhesion: biomimicking beyond nature?,” Soft Matter, vol. 8, no. 7, pp. 2070-2086, 2012.
    [13] E. Bormashenko, R. Grynyov, G. Chaniel, H. Taitelbaum, and Y. Bormashenko, “Robust technique allowing manufacturing superoleophobic surfaces,” Applied Surface Science, vol. 270, pp. 98-103, 2013.
    [14] X. J. Feng, and L. Jiang, “Design and creation of superwetting/ antiwetting surfaces,” Advanced Materials, vol. 18, no. 23, pp. 3063-3078, 2006.
    [15] A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, “Designing superoleophobic surfaces,” Science, vol. 318, no. 5856, pp. 1618-1622, 2007.
    [16] J. Bico, U. Thiele, and D. Quéré, “Wetting of textured surfaces,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 206, no. 1, pp. 41-46, 2002.
    [17] E. W. Washburn, “Note on a method of determining the distribution of pore sizes in a porous material,” Proceedings of the national academy of sciences, vol. 7, no. 4, pp. 115-116, 1921.
    [18] D. Deng, D. P. Prendergast, J. MacFarlane, R. Bagatin, F. Stellacci, and P. M. Gschwend, “Hydrophobic meshes for oil spill recovery devices,” ACS Apply Material Interfaces, vol. 5, no. 3, pp. 774-81, 2013.
    [19] M. Huang, Y. Si, X. Tang, Z. Zhu, B. Ding, L. Liu, G. Zheng, W. Luo, and J. Yu, “Gravity driven separation of emulsified oil–water mixtures utilizing in situ polymerized superhydrophobic and superoleophilic nanofibrous membranes,” Journal of Materials Chemistry A, vol. 1, no. 45, pp. 14071-14074, 2013.
    [20] Z. Shi, W. Zhang, F. Zhang, X. Liu, D. Wang, J. Jin, and L. Jiang, “Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films,” Advanced Materials, vol. 25, no. 17, pp. 2422-7, 2013.
    [21] Y. Cao, Y. Chen, N. Liu, X. Lin, L. Feng, and Y. Wei, “Mussel-inspired chemistry and Stöber method for highly stabilized water-in-oil emulsions separation,” Journal of Materials Chemistry A, vol. 2, no. 48, pp. 20439-20443, 2014.
    [22] C. Cao, M. Ge, J. Huang, S. Li, S. Deng, S. Zhang, Z. Chen, K. Zhang, S. S. Al-Deyab, and Y. Lai, “Robust fluorine-free superhydrophobic PDMS–ormosil@fabrics for highly effective self-cleaning and efficient oil–water separation,” Journal of Materials Chemistry A, vol. 4, no. 31, pp. 12179-12187, 2016.
    [23] E. C. Cho, C.W. Chang-Jian, Y. S. Hsiao, K. C. Lee, and J. H. Huang, “Interfacial engineering of melamine sponges using hydrophobic TiO2 nanoparticles for effective oil/water separation,” Journal of the Taiwan Institute of Chemical Engineers, vol. 67, pp. 476-483, 2016.
    [24] S. Lei, Z. Shi, J. Ou, F. Wang, M. Xue, W. Li, G. Qiao, X. Guan, and J. Zhang, “Durable superhydrophobic cotton fabric for oil/water separation,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 533, pp. 249-254, 2017.
    [25] W. Zhang, N. Liu, Y. Cao, X. Lin, Y. Liu, and L. Feng, “Superwetting porous materials for wastewater treatment: from immiscible oil/water mixture to emulsion separation,” Advanced Materials Interfaces, vol. 4, no. 10, pp. 1700029(1-18), 2017.
    [26] V. Singh, Y. J. Sheng, and H. K. Tsao, “Facile fabrication of superhydrophobic copper mesh for oil/water separation and theoretical principle for separation design,” Journal of the Taiwan Institute of Chemical Engineers, vol. 87, pp. 150-157, 2018.
    [27] X. Bai, Z. Zhao, H. Yang, and J. Li, “ZnO nanoparticles coated mesh with switchable wettability for on-demand ultrafast separation of emulsified oil/water mixtures,” Separation and Purification Technology, vol. 221, pp. 294-302, 2019.
    [28] Y. Liang, S. Kim, P. Kallem, and H. Choi, “Capillary effect in Janus electrospun nanofiber membrane for oil/water emulsion separation,” Chemosphere, vol. 221, pp. 479-485, 2019.
    [29] Y. Pan, L. Liu, Z. Zhang, S. Huang, Z. Hao, and X. Zhao, “Surfaces with controllable super-wettability and applications for smart oil-water separation,” Chemical Engineering Journal, vol. 378, pp.122178 (1-8), 2019.
    [30] Y. Wang, M. Wang, J. Wang, H. Wang, X. Men, and Z. Zhang, “A rapid, facile and practical fabrication of robust PDMS@starch coatings for oil-water separation,” Journal of the Taiwan Institute of Chemical Engineers, vol. 99, pp. 215-223, 2019.
    [31] D. D. Ejeta, C. F. Wang, S. W. Kuo, J. K. Chen, H. C. Tsai, W. S. Hung, C. C. Hu, and J. Y. Lai, “Preparation of superhydrophobic and superoleophilic cotton-based material for extremely high flux water-in-oil emulsion separation,” Chemical Engineering Journal, vol. 402, pp. 126289 (1-10), 2020.
    [32] Y. Deng, C. Peng, M. Dai, D. Lin, I. Ali, S. S. Alhewairini, X. Zheng, G. Chen, J. Li, and I. Naz, “Recent development of super-wettable materials and their applications in oil-water separation,” Journal of Cleaner Production, vol. 266, pp. 121624 (1-26) 2020.
    [33] J. Wu, X. Zhao, C. Tang, J. Lei, and L. Li, “One-step dipping method to prepare inorganic-organic composite superhydrophobic coating for durable protection of magnesium alloys,” Journal of the Taiwan Institute of Chemical Engineers, vol. 135, pp. 104364 (1-8) 2022.
    [34] F. Liu, N. A. Hashim, Y. Liu, M. R. M. Abed, and K. Li, “Progress in the production and modification of PVDF membranes,” Journal of Membrane Science, vol. 375, no. 1-2, pp. 1-27, 2011.
    [35] N. Wang, K. Burugapalli, W. Song, J. Halls, F. Moussy, Y. Zheng, Y. Ma, Z. Wu, and K. Li, “Tailored fibro-porous structure of electrospun polyurethane membranes, their size-dependent properties and trans-membrane glucose diffusion,” Journal of Membrane Science, vol. 427, pp. 207-217, 2013.
    [36] W. Zhang, Z. Shi, F. Zhang, X. Liu, J. Jin, and L. Jiang, “Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux,” Advanced Materials, vol. 25, no. 14, pp. 2071-2076, 2013.
    [37] K. G. Tamberg, “Effect of electrospinning conditions on morphology of PVDF fibers,” Technology of Materials curricular KAOB, pp. 1-33, 2014.
    [38] J. Wu, Y. Ding, J. Wang, T. Li, H. Lin, J. Wang, and F. Liu, “Facile fabrication of nanofiber- and micro/nanosphere-coordinated PVDF membrane with ultrahigh permeability of viscous water-in-oil emulsions,” Journal of Materials Chemistry A, vol. 6, no. 16, pp. 7014-7020, 2018.
    [39] Ç. Akduman, “Mikrofiltrasyon için elektrolif çekim yöntemi ile üretilmiş PVDF nanolifli membranlar: Gözenek boyutu ve kalınlığının membran performansına etkisi,” European Journal of Science and Technology, pp. 247-255, 2019.
    [40] M. Wang, J. Hu, Y. Wang, and Y. T. Cheng, “The influence of polyvinylidene fluoride (PVDF) binder properties on LiNi0.33Co0.33Mn0.33O2(NMC) electrodes made by a dry-powder-coating process,” Journal of The Electrochemical Society, vol. 166, no. 10, pp. 2151-2157, 2019.
    [41] K. Castkova, J. Kastyl, D. Sobola, J. Petrus, E. Stastna, D. Riha, and P. Tofel, “Structure-properties relationship of electrospun PVDF fibers,” Nanomaterials (Basel), vol. 10, no. 6, pp. 1221 (1-19), 2020.
    [42] P. K. Szewczyk, and U. Stachewicz, “The impact of relative humidity on electrospun polymer fibers: from structural changes to fiber morphology,” Advances in Colloid and Interface Science, vol. 286, pp. 102315 (1-23), 2020.
    [43] Z. He, F. Rault, M. Lewandowski, E. Mohsenzadeh, and F. Salaun, “Electrospun PVDF nanofibers for piezoelectric applications: A review of the influence of electrospinning parameters on the beta phase and crystallinity enhancement,” Polymers (Basel), vol. 13, no. 2, pp. 174 (1-23), 2021.
    [44] D. Mailley, A. Hébraud, and G. Schlatter, “A review on the impact of humidity during electrospinning: from the nanofiber structure engineering to the applications,” Macromolecular Materials and Engineering, vol. 306, no. 7, pp. 2100115 (1-25), 2021.
    [45] J. E. Marshall, A. Zhenova, S. Roberts, T. Petchey, P. Zhu, C. E. J. Dancer, C. R. McElroy, E. Kendrick, and V. Goodship, “On the solubility and stability of polyvinylidene fluoride,” polymers (Basel), vol. 13, no. 9, pp. 1354 (1-31), 2021.
    [46] S. Oh, S. Ki, S. Ryu, M. C. Shin, J. Lee, C. Lee, and Y. Nam, “Performance analysis of gravity-driven oil-water separation using membranes with special wettability,” Langmuir, vol. 35, no. 24, pp. 7769-7782, 2019.
    [47] E. Coene, O. Silva, and J. Molinero, “A numerical model for the performance assessment of hydrophobic meshes used for oil spill recovery,” International Journal of Multiphase Flow, vol. 99, pp. 246-256, 2018.
    [48] Y. T. Lim, N. Han, W. Jang, W. Jung, M. Oh, S. W. Han, H. Y. Koo, and W. S. Choi, “Surface design of separators for oil/water separation with high separation capacity and mechanical stability,” Langmuir, vol. 33, no. 32, pp. 8012-8022, 2017.
    [49] D. C. Tanugi, and J. C. Grossman, “Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination,” The Journal of Chemical Physics, vol. 141, no. 7, pp. 074704 (1-5), 2014.
    [50] Z. Shi, W. Zhang, F. Zhang, X. Liu, D. Wang, J. Jin, and L. Jiang, “Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films,” Advanced Materials, vol. 25, no. 17, pp. 2422-2427, 2013.
    [51] X. Peng, J. Jin, Y. Nakamura, T. Ohno, and I. Ichinose, “Ultrafast permeation of water through protein-based membranes,” Nature Nanotechnology, vol. 4, no. 6, pp. 353-357, 2009.
    [52] R. W. Baker, Membrane technology and applications, second edition John Wiley & Sons, Ltd, 2012.
    [53] T. Mohammad, M. Kazemimoghadam, and M. Saadabadi, “Modeling of membrane fouling and flux decline in reverse osmosis during separation of oil in water emulsions,” Desalination, vol. 157, pp. 369-375, 2003.
    [54] E. Iritani, and N. Katagiri, “Developments of blocking filtration model in membrane filtration,” KONA Powder and Particle Journal, vol. 33, pp. 179-202, 2016.
    [55] M. J. Corbatón-Báguena, M. C. Vincent-Vela, J. M. Gozálvez-Zafrilla, S. Álvarez-Blanco, J. Lora-García, and D. Catalán-Martínez, “Comparison between artificial neural networks and Hermia’s models to assess ultrafiltration performance,” Separation and Purification Technology, vol. 170, pp. 434-444, 2016.
    [56] A. Salahi, M. Abbasi, and T. Mohammadi, “Permeate flux decline during UF of oily wastewater: Experimental and modeling,” Desalination, vol. 251, no. 1-3, pp. 153-160, 2010.
    [57] T. Zhang, J. Zhang, Q. Wang, H. Zhang, Z. Wang, and Z. Wu, “Evaluating of the performance of natural mineral vermiculite modified PVDF membrane for oil/water separation by membrane fouling model and XDLVO theory,” Journal of Membrane Science, vol. 641, pp.119886 (1-12), 2022.
    [58] S. Y. Luo, L. W. Huang, C. Y. Hsieh, and Y. M. Yang, “Performance characterization of hydrophobic/oleophilic fabric membranes for stratified oil-water separation,” Applied Physics A, vol. 128, no. 1, pp. 22 (1-12), 2021.
    [59] S. Y. Luo, L. W. Huang, M. T. Jan, and Y. M. Yang, “Designing collection well for oil spill cleanup and recovery by using hydrophobic/oleophilic fabric membranes,” London Journal of Research in Science: Natural and Formal, vol. 22, no. 13, pp. 19-33, 2022.
    [60] J. Wei, C. Qiu, C. Y. Tang, R. Wang, and A. G. Fane, “Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes,” Journal of Membrane Science, vol. 372, no. 1-2, pp. 292-302, 2011.
    [61] 謝承鎰, “疏水/親油紡織品分離膜的油-水乳液分離機制之探討,"成功大學化學工程學系學位論文, 2020.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE