簡易檢索 / 詳目顯示

研究生: 黃聖翔
Huang, Shenq-Shyang
論文名稱: WOX1/IκBα/ERK三聚體在T細胞生長調節中的角色
Potential role of an in vivo trimeric WOX1/IκBα/ERK complex in T-cell growth regulation
指導教授: 張南山
Chang, Nan-Shan
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 64
中文關鍵詞: T淋巴球MOLT-4WOX1FORWWOXIκBαMEK1ERKPMAIonophore
外文關鍵詞: T lymphocyte, MOLT-4, WOX1, FOR, WWOX, IκBα, MEK1, ERK, PMA, Ionophore
相關次數: 點閱:111下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腫瘤抑制蛋白雙色胺酸功能區氧化還原酶(WW domain-containing oxidoreductase)又名WWOX、FOR或WOX1,在調節血癌T細胞生長及細胞凋亡的角色並未被全然瞭解。在這個研究中,我使用急性淋巴母細胞白血病細胞MOLT-4來探討WOX1在調節細胞生長中的角色。為了瞭解WOX1在血癌T細胞中參與的分子機制,從過去的實驗中,發現WOX1與NF-κB的抑制者,IκBα,存在著交互作用。當MOLT-4細胞受到Ionophore/PMA (IoP)的刺激後,我們發現在1至2小時內,WOX1在Tyr33的位點磷酸化程度下降,2至5小時內緊接著是ERK的磷酸化程度上升,而IκBα在3至15小時內會被降解,最後在15至24小時後,CD3及CD8的表現程度上升。我們更進一步發現IoP可以增加S及G2/M時期的細胞族群而促進細胞週期的進行。我們使用MEK1的抑制劑,U0126,阻止了CD3及CD8表現程度上升的現象,這個實驗結果說明了Raf/MEK/ERK這條訊息傳遞路徑可能參與這些蛋白質的表現調控,並且與IκBα及其可能結合的蛋白質有關。利用共軛焦螢光顯微鏡,我們發現部份WOX1在粒腺體內與IκBα有共位現象(Colocalization),而IoP會造成這個共位現象在3小時內下降。同時利用共同免疫沈澱(Co-immunoprecipitation),發現IoP造成WOX1及IκBα在2小時內分開,而Tyr33磷酸化的WOX1會與IκBα結合。利用共同免疫沈澱,WOX1藉由IκBα N端的ankyrin-repeat區域進行結合,而不是C端的PEST domain。總結上述結果,我們發現了一個新的WOX1結合蛋白,IκBα。而WOX1與IκBα間的結合可能調控MOLT-4 T細胞的生長。

    The role of tumor suppressor WW domain-containing oxidoreductase, known as WWOX, FOR or WOX1, in regulating T leukemia cell proliferation and apoptosis is not well understood. In this study, acute lymphoblastic MOLT-4 leukemia T cells were used to investigate whether WOX1 participates in the cell growth regulation. To understand the molecular pathway of WOX1 signaling in T-cell leukemia, WOX1 was shown to interact with IκBα, an inhibitor of transcription factor NF-κB. Upon stimulation of MOLT-4 cells with ionophore/PMA (IoP), downregulation of WOX1 phosphoryation at Tyr33 occurred in 1-2 hrs, followed by ERK phosphorylation in 2-5 hrs, IκBα degradation in 3-15 hrs, and upregulation of CD3 and CD8 in 15-24 hrs. IoP promoted the cell cycle progression by increasing cell populations at the S and G2/M phases. MEK1 inhibitor U0126 blocked the expression of CD3 and CD8 proteins, suggesting the involvement of the Raf/MEK/ERK pathway and that IκBα binds candidate proteins in this pathway. By confocal microscopy, WOX1 colocalized, in part, with IκBα in the mitochondria, and IoP induced the dissociation in 3 hrs. In parallel, IoP induced WOX1 dissociation from IκBα in 2 hrs as determined by co-IP, in which Tyr33-phosphorylated WOX1 physically bound IκBα. Also, by co-IP, WOX1 bound IκBα via N-terminal ankyrin-repeat region but not the C-terminus PEST domain. Taken together, a novel WOX1 binding protein, IκBα, is revealed. And the interactions of WOX1 and IκBα may regulate cell growth and proliferation in MOLT-4 T-cell.

    中文摘要..........................................................................................................I English abstract..............................................................................................II 誌謝...............................................................................................................IV Index of figures............................................................................................VII Abbreviation.....................................................................................................................IX Introduction...................................................................................................1 The goals of this study............................................................................1 T lymphoid cell development...................................................................1 TCR/CD3 in cell differentiation................................................................2 TCR/CD3 in positive and negative selection of T cells..............................2 Ionophore A23187 and phorbol 12-myristate 13-acetate (PMA) as inducers for T-cell activation and differentiation.....................................4 Role of NF-κB and IκBα in T-cell differentiation......................................4 Tumor suppressor WW-doamain containing oxidoreductase WOX1.........6 Materials and Methods.................................................................................10 Cell lines..............................................................................................10 Chemicals and antibodies.....................................................................10 DNA constructs.....................................................................................10 Electroporation.....................................................................................11 Förster (Fluorescence) resonance energy transfer (FRET)......................11 Co-immunoprecipitation and immunoblotting.....................................12 Immunofluorescence............................................................................13 MitotTracker® staining........................................................................13 Cell cycle analysis................................................................................14 Nuclear extraction...............................................................................14 Results.........................................................................................................16 WOX1 interacts with IκBα.....................................................................16 Ionophore and PMA induce CD3 upregulation and ERK phosphorylation in MOLT-4 T-cell.................................................................................16 WOX1 is colocalized with IκBα and ERK................................................18 WOX1 and ERK dissociate from IκBα during ionophore/PMA stimulation..........................................................................................20 IκBα physically interacts with WOX1....................................................20 Wild-type WW domain of WOX1 interacts with IκBα..............................21 MEK1 inhibitor U0126 blocks the upregulation of CD3 and CD8 and decreases the binding of WOX1 and IκBα.............................................22 Discussion....................................................................................................23 References cited...........................................................................................27 Figures.........................................................................................................32

    1. Aqeilan, R. I., Trapasso, F., Hussain, S., Costinean, S., Marshall, D., Pekarsky, Y., Hagan, J. P., Zanesi, N., Kaou, M., Stein, G. S., Lian, J. B., and Croce, C. M. Targeted deletion of Wwox reveals a tumor suppressor function. (2007) Proc. Natl. Acad. Sci. U. S. A. 104, 3949-3954
    2. Kearse, K. P. (2000) T cell protocols : development and activation, Humana Press, Totowa, N.J.
    3. Bottero, V., Withoff, S., and Verma, I. M. NF-kappaB and the regulation of hematopoiesis. (2006) Cell Death Differ. 13, 785-797
    4. Zuniga-Pflucker, J. C., and Lenardo, M. J. Regulation of thymocyte development from immature progenitors. (1996) Curr. Opin. Immunol. 8, 215-224
    5. Starr, T. K., Jameson, S. C., and Hogquist, K. A. Positive and negative selection of T cells. (2003) Annu. Rev. Immunol. 21, 139-176
    6. Nagasawa, K., and Mak, T. W. Phorbol esters induce differentiation in human malignant T lymphoblasts. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 2964-2968
    7. Nakao, Y., Matsuda, S., Fujita, T., Watanabe, S., Morikawa, S., Saida, T., and Ito, Y. Phorbol ester-induced differentiation of human T-lymphoblastic cell line HPB-ALL. (1982) Cancer Res. 42, 3843-3850
    8. Mayumi, T., Nagasawa, K., Horiuchi, T., and Kusaba, T. Phorbol ester receptors and the induction of differentiation in the human T lymphoblastic cell line MOLT-3. (1988) Exp. Cell Biol. 56, 12-19
    9. Iwata, M., Kuwata, T., Mukai, M., Tozawa, Y., and Yokoyama, M. Differential induction of helper and killer T cells from isolated CD4+CD8+ thymocytes in suspension culture. (1996) Eur. J. Immunol. 26, 2081-2086
    10. Takahama, Y., and Nakauchi, H. Phorbol ester and calcium ionophore can replace TCR signals that induce positive selection of CD4 T cells. (1996) J. Immunol. 157, 1508-1513
    11. Jacobs, M. D., and Harrison, S. C. Structure of an IkappaBalpha/NF-kappaB complex. (1998) Cell 95, 749-758
    12. Chang, N. S. The non-ankyrin C terminus of Ikappa Balpha physically interacts with p53 in vivo and dissociates in response to apoptotic stress, hypoxia, DNA damage, and transforming growth factor-beta 1-mediated growth suppression. (2002) J. Biol. Chem. 277, 10323-10331
    13. Bakker, T. R., Renno, T., and Jongeneel, C. V. Impaired fetal thymocyte development after efficient adenovirus-mediated inhibition of NF-kappa B activation. (1999) J. Immunol. 162, 3456-3462
    14. Hettmann, T., and Leiden, J. M. NF-kappa B is required for the positive selection of CD8+ thymocytes. (2000) J. Immunol. 165, 5004-5010
    15. Chang, N. S., Pratt, N., Heath, J., Schultz, L., Sleve, D., Carey, G. B., and Zevotek, N. Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity. (2001) J. Biol. Chem. 276, 3361-3370
    16. Chang, N. S., Doherty, J., and Ensign, A. JNK1 physically interacts with WW domain-containing oxidoreductase (WOX1) and inhibits WOX1-mediated apoptosis. (2003) J. Biol. Chem. 278, 9195-9202
    17. Chang, N. S., Doherty, J., Ensign, A., Lewis, J., Heath, J., Schultz, L., Chen, S. T., and Oppermann, U. Molecular mechanisms underlying WOX1 activation during apoptotic and stress responses. (2003) Biochem. Pharmacol. 66, 1347-1354
    18. Chang, N. S., Hsu, L. J., Lin, Y. S., Lai, F. J., and Sheu, H. M. WW domain-containing oxidoreductase: a candidate tumor suppressor. (2007) Trends Mol. Med.13, 12-22
    19. Del Mare, S., Salah, Z., and Aqeilan, R. I. WWOX: its genomics, partners, and functions. (2009) J. Cell Biochem. 108, 737-745
    20. Driouch, K., Prydz, H., Monese, R., Johansen, H., Lidereau, R., and Frengen, E. Alternative transcripts of the candidate tumor suppressor gene, WWOX, are expressed at high levels in human breast tumors. (2002) Oncogene 21, 1832-1840
    21. Wang, X., Chao, L., Jin, G., Ma, G., Zang, Y., and Sun, J. Association between CpG island methylation of the WWOX gene and its expression in breast cancers. (2009) Tumour Biol. 30, 8-14
    22. Ludes-Meyers, J. H., Kil, H., Parker-Thornburg, J., Kusewitt, D. F., Bedford, M. T., and Aldaz, C. M. Generation and characterization of mice carrying a conditional allele of the Wwox tumor suppressor gene. (2009) PLoS ONE 4, e7775
    23. Suzuki, H., Katayama, K., Takenaka, M., Amakasu, K., Saito, K., and Suzuki, K. A spontaneous mutation of the Wwox gene and audiogenic seizures in rats with lethal dwarfism and epilepsy. (2009) Genes Brain Behav. 8, 650-660
    24. Sudol, M., Chen, H. I., Bougeret, C., Einbond, A., and Bork, P. Characterization of a novel protein-binding module--the WW domain. (1995) FEBS Lett. 369, 67-71
    25. Macias, M. J., Wiesner, S., and Sudol, M. WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. (2002) FEBS Lett. 513, 30-37
    26. Sudol, M., and Hunter, T. NeW wrinkles for an old domain. (2000) Cell 103, 1001-1004
    27. Hu, H., Columbus, J., Zhang, Y., Wu, D., Lian, L., Yang, S., Goodwin, J., Luczak, C., Carter, M., Chen, L., James, M., Davis, R., Sudol, M., Rodwell, J., and Herrero, J. J. A map of WW domain family interactions. (2004) Proteomics 4, 643-655
    28. Chang, J. Y., He, R. Y., Lin, H. P., Hsu, L. J., Lai, F. J., Hong, Q., Chen, S. J., and Chang, N. S. Signaling from membrane receptors to tumor suppressor WW domain-containing oxidoreductase. (2010) Exp. Biol. Med. (Maywood) 235, 796-804
    29. Chang, N. S., Doherty, J., Ensign, A., Schultz, L., Hsu, L. J., and Hong, Q. WOX1 is essential for tumor necrosis factor-, UV light-, staurosporine-, and p53-mediated cell death, and its tyrosine 33-phosphorylated form binds and stabilizes serine 46-phosphorylated p53. (2005) J. Biol. Chem. 280, 43100-43108
    30. Lai, F. J., Cheng, C. L., Chen, S. T., Wu, C. H., Hsu, L. J., Lee, J. Y., Chao, S. C., Sheen, M. C., Shen, C. L., Chang, N. S., and Sheu, H. M. WOX1 is essential for UVB irradiation-induced apoptosis and down-regulated via translational blockade in UVB-induced cutaneous squamous cell carcinoma in vivo. (2005) Clin. Cancer Res. 11, 5769-5777
    31. Aqeilan, R. I., Pekarsky, Y., Herrero, J. J., Palamarchuk, A., Letofsky, J., Druck, T., Trapasso, F., Han, S. Y., Melino, G., Huebner, K., and Croce, C. M. Functional association between Wwox tumor suppressor protein and p73, a p53 homolog. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 4401-4406
    32. Aqeilan, R. I., Palamarchuk, A., Weigel, R. J., Herrero, J. J., Pekarsky, Y., and Croce, C. M. Physical and functional interactions between the Wwox tumor suppressor protein and the AP-2gamma transcription factor. (2004) Cancer Res. 64, 8256-8261
    33. Aqeilan, R. I., Donati, V., Palamarchuk, A., Trapasso, F., Kaou, M., Pekarsky, Y., Sudol, M., and Croce, C. M. WW domain-containing proteins, WWOX and YAP, compete for interaction with ErbB-4 and modulate its transcriptional function. (2005) Cancer Res. 65, 6764-6772
    34. Mahajan, N. P., Whang, Y. E., Mohler, J. L., and Earp, H. S. Activated tyrosine kinase Ack1 promotes prostate tumorigenesis: role of Ack1 in polyubiquitination of tumor suppressor Wwox. (2005) Cancer Res. 65, 10514-10523
    35. Gourley, C., Paige, A. J., Taylor, K. J., Ward, C., Kuske, B., Zhang, J., Sun, M., Janczar, S., Harrison, D. J., Muir, M., Smyth, J. F., and Gabra, H. WWOX gene expression abolishes ovarian cancer tumorigenicity in vivo and decreases attachment to fibronectin via integrin alpha3. (2009) Cancer Res. 69, 4835-4842
    36. Matteucci, E., Bendinelli, P., and Desiderio, M. A. Nuclear localization of active HGF receptor Met in aggressive MDA-MB231 breast carcinoma cells. (2009) Carcinogenesis 30, 937-945
    37. Bouteille, N., Driouch, K., Hage, P. E., Sin, S., Formstecher, E., Camonis, J., Lidereau, R., and Lallemand, F. Inhibition of the Wnt/beta-catenin pathway by the WWOX tumor suppressor protein. (2009) Oncogene 28, 2569-2580
    38. Hsu, L. J., Schultz, L., Hong, Q., Van Moer, K., Heath, J., Li, M. Y., Lai, F. J., Lin, S. R., Lee, M. H., Lo, C. P., Lin, Y. S., Chen, S. T., and Chang, N. S. Transforming growth factor beta1 signaling via interaction with cell surface Hyal-2 and recruitment of WWOX/WOX1. (2009) J. Biol. Chem. 284, 16049-16059
    39. Hong, Q., Sze, C. I., Lin, S. R., Lee, M. H., He, R. Y., Schultz, L., Chang, J. Y., Chen, S. J., Boackle, R. J., Hsu, L. J., and Chang, N. S. Complement C1q activates tumor suppressor WWOX to induce apoptosis in prostate cancer cells. (2009) PLoS ONE 4, e5755
    40. Hong, Q., Hsu, L. J., Schultz, L., Pratt, N., Mattison, J., and Chang, N. S. Zfra affects TNF-mediated cell death by interacting with death domain protein TRADD and negatively regulates the activation of NF-kappaB, JNK1, p53 and WOX1 during stress response. (2007) BMC Mol. Biol. 8, 50
    41. Jin, C., Ge, L., Ding, X., Chen, Y., Zhu, H., Ward, T., Wu, F., Cao, X., Wang, Q., and Yao, X. PKA-mediated protein phosphorylation regulates ezrin-WWOX interaction. (2006) Biochem. Biophys. Res. Commun. 341, 784-791
    42. Ludes-Meyers, J. H., Kil, H., Bednarek, A. K., Drake, J., Bedford, M. T., and Aldaz, C. M. WWOX binds the specific proline-rich ligand PPXY: identification of candidate interacting proteins. (2004) Oncogene 23, 5049-5055
    43. van Dongen, J. J., Krissansen, G. W., Wolvers-Tettero, I. L., Comans-Bitter, W. M., Adriaansen, H. J., Hooijkaas, H., van Wering, E. R., and Terhorst, C. Cytoplasmic expression of the CD3 antigen as a diagnostic marker for immature T-cell malignancies. (1988) Blood 71, 603-612
    44. Planelles, D., Hernandez-Godoy, J., and Gonzalez-Molina, A. Differential effects of the calcium ionophore A23187 and the phorbol ester PMA on lymphocyte proliferation. (1992) Agents Actions 35, 238-244
    45. Tanahashi, M., Yokoyama, T., Kobayashi, Y., Yamakawa, Y., Maeda, M., and Fujii, Y. Effect of phorbol ester and calcium ionophore on human thymocytes. (2001) Hum. Immunol. 62, 771-781
    46. He, H., Wang, X., Gorospe, M., Holbrook, N. J., and Trush, M. A. Phorbol ester-induced mononuclear cell differentiation is blocked by the mitogen-activated protein kinase kinase (MEK) inhibitor PD98059. (1999) Cell Growth Differ. 10, 307-315
    47. Yamamoto, T., Ebisuya, M., Ashida, F., Okamoto, K., Yonehara, S., and Nishida, E. Continuous ERK activation downregulates antiproliferative genes throughout G1 phase to allow cell-cycle progression. (2006) Curr. Biol. 16, 1171-1182
    48. Torii, S., Yamamoto, T., Tsuchiya, Y., and Nishida, E. ERK MAP kinase in G cell cycle progression and cancer. (2006) Cancer Sci. 97, 697-702
    49. Sze, C. I., Su, M., Pugazhenthi, S., Jambal, P., Hsu, L. J., Heath, J., Schultz, L., and Chang, N. S. Down-regulation of WW domain-containing oxidoreductase induces Tau phosphorylation in vitro. A potential role in Alzheimer's disease. (2004) J. Biol. Chem. 279, 30498-30506
    50. Chang, N. S., Schultz, L., Hsu, L. J., Lewis, J., Su, M., and Sze, C. I. 17beta-Estradiol upregulates and activates WOX1/WWOXv1 and WOX2/WWOXv2 in vitro: potential role in cancerous progression of breast and prostate to a premetastatic state in vivo. (2005) Oncogene 24, 714-723
    51. Perkins, N. D. Integrating cell-signalling pathways with NF-kappaB and IKK function. (2007) Nat. Rev. Mol. Cell Biol. 8, 49-62

    無法下載圖示 校內:2021-01-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE