簡易檢索 / 詳目顯示

研究生: 鄭敦文
Cheng, Tun-Wen
論文名稱: 摩擦攪拌表面改質對FCD450及ADC1C鑄造合金之微觀組織演變及顆粒沖蝕磨耗特性之影響
Effect of Friction Stirred Surface Modification (FSSM) on the Microstructural Evolution and Particle Erosion Characteristics of FCD450 and ADC1C Cast Alloys
指導教授: 陳立輝
Chen, Li-Hui
呂傳盛
Lui, Truan-Sheng
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 84
中文關鍵詞: 球墨鑄鐵摩擦攪拌製程麻田散體壓鑄Al-14Si合金顆粒沖蝕磨耗
外文關鍵詞: Spheroidal graphite cast iron, Friction stir processing, Martensite, Die cast Al-14Si alloy, Particle erosion wear
相關次數: 點閱:106下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 壓鑄鋁合金及球墨鑄鐵(Ductile cast iron)廣泛地應用在各領域,而在管線或引擎等應用場合,磨耗所造成的重量損失導致工件破壞是必須被考慮的。本實驗材料選擇ADC1C組成的壓鑄Al-14Si合金及FCD450肥粒體基球墨鑄鐵(Fe-2.9C-2.5Si)為實驗材料,此兩者均具有第二相顆粒散佈在基地中。本論文針對這兩種具不同第二相顆粒之材料進行顆粒沖蝕磨耗行為研究,並探討摩擦攪拌製程(Friction stir process, FSP)對顆粒沖蝕阻抗的改質效果。
    本研究利用摩擦攪拌製程(Friction stir process, FSP)進行表面改質,鋁合金採用具有凸鞘的攪拌工具,鑄鐵則選用無凸鞘的攪拌工具。之後探討材料經過摩擦攪拌後基地相變態的現象,以及軟硬質第二相顆粒的演變。在這樣的基礎上,本研究進一步探討不同材料的不同組織在顆粒沖蝕磨耗行為所扮演的角色,其中沖蝕顆粒均選用SiO2,壓鑄Al-14Si合金固定沖蝕顆粒飛行速率為66 m/s,沖蝕角度為15°及90°;球墨鑄鐵則是16 cm/s的沖蝕顆粒飛行速率,並改變沖蝕角度從20°漸次增加沖蝕角度至90°。
    實驗結果發現,鑄態的壓鑄Al-14Si合金除了樹枝狀的α-Al以外,更含有大量第二相,由面積率的的多寡來看,分別為不規則或針狀的共晶矽、長條狀的β-Al3 (Fe, Mn) Si2以及最少量的塊狀初晶矽。當壓鑄Al-14Si合金經過摩擦攪拌後,樹枝狀區間消失,初晶矽呈較小的塊狀,共晶矽及β相亦被細化,縱橫比下降。在顆粒沖蝕磨耗行為方面,壓鑄Al-14Si合金及改質後的材料在高角度的磨耗阻抗均高於在低角度的。顯示了這兩組材料之磨耗行為受延性機制主導,主要為α-Al基地的塑性變形,以及切削的作用。而不論是斜向或正向沖蝕,攪拌後的試片均具有較佳的磨耗阻抗,這可歸納為第二相顆粒的細化、縱橫比下降而減低顆粒脆性破斷的機會,並且第二相顆粒散佈於基地中更能有效地阻止基地塑性變形。
    具軟質石墨顆粒的肥粒體基球墨鑄鐵經過攪拌後,由硬度分布及組織差異可發現表層區域發生相變化。最上層為熱機影響區,此區與鄰近的熱影響區基地組織相似,主要以針棒狀的麻田散體相及塊狀或片狀的沃斯田體組成。最大的差異為石墨形貌,前者可見因攪拌時應力作用而變形的石墨,後者則未受力,維持原始的球狀。距表面更遠的熱影響區,則只有部分基地發生相變態,且大致傾向於石墨附近發生。這些區域由透鏡狀的麻田散體及塊狀的沃斯田體組成,其他未變態的區域則維持肥粒體基地。變態的區域中,多出現麻田散體平板且具有高碳麻田散體的特徵。至於沖蝕磨耗行為,從磨耗曲線可以觀察到,肥粒體基試片的低角度磨耗阻抗劣於高角度,這顯示延性的磨耗機制主導了肥粒體基試片的重量損失。但攪拌後試片的磨耗率則顯現了雙峰值的現象,分別在約30°及60°時出現;低角度峰值的出現意味著此時的延性機構較為顯著,基地及石墨的塑性變形為造成重量損失的主因;60°峰值的出現應是脆性的麻田散體相與具較佳延性的殘留沃斯田體相調和之故。此外,在低角度沖蝕時,攪拌試片之磨耗阻抗較肥粒體基試片為佳,在高角度沖蝕時則顯示了相反的結果,主要因素為硬脆的麻田散體相生成導致基地較不易塑性變形,但當在高角度受的衝擊較大時,反而易脆性破斷所致。

    The current research aimed to explore the particle erosion of a die cast Al-14Si alloy ADC1C and ferritic ductile cast iron FCD450, and how the particle erosion behavior can be affected by modification of the microstructure via friction stir processing (FSP). In this study, perform FSP on die cast Al alloys by a conventional stirring tool with a pin, but ductile cast iron applied with no-pin tool. After specimens being stirred, evolution of matrix and second phase is investigated. Therefore, we discuss the different microstructure of different materials how to affect the erosion wear behaviors. The results indicate that friction stirring of the Al alloy can annihilate the dendritic structure of primary α-Al, break the eutectic Si and β-Al3(Fe,Mn)Si2 particles lengthwise, cause the eutectic Si particles to become more rounded, and blend the second phase particles rather uniformly in the α-Al matrix. According to the SiO2 particle erosion test, this microstructure modification improves the erosion resistance by not only second phase dispersion but also suppressing the opportunity of brittle cracking of the second phase particles. As for FCD450, the modified surface transformed to a thermal mechanical affected zone and a heat affected zone. The former includes elongated graphite, lenticular martensite and chunck-like or film-like retained austenite. The heat affected zone close to the thermal mechanical affected zone maintains nodular graphite and the similar matrix as the above. However, the farther reveals the hard-eye structure. The results of erosion test on ductile iron indicate that the modified surface reveals better erosion resistance at oblique impact; owing to the hard, brittle martensite and elongated graphite. However surface modification does not improve the erosion resistance at high angle impact. The friction stirred cast iron depicts maximum erosion rate at 30° and 60° impact, where the former is governed by ductile erosion and the latter by the brittle effect.

    中文摘要 I Extended Abstract III 誌謝 XVI 第1章 前言 1 第2章 文獻回顧 3 2-1 材料基本特性及耐沖蝕磨耗應用 3 2-1-1 壓鑄鋁合金 3 2-1-2 球墨鑄鐵 4 2-2 摩擦攪拌製程相關研究現況 5 2-2-1 摩擦攪拌製程簡介 5 2-2-2 鋁合金之FSP相關研究 5 2-2-3 鐵基合金之FSP相關研究 6 2-3 沖蝕磨耗行為相關研究現況 7 2-3-1 顆粒沖蝕磨耗簡介 7 2-3-2 沖蝕角度與沖蝕磨耗阻抗關係 7 2-3-3 延性機構主導之沖蝕磨耗行為 8 2-3-4 脆性機構主導之沖蝕磨耗行為 10 2-3-5 鋁合金之沖蝕磨耗現象 10 2-3-6 鑄鐵之沖蝕磨耗現象 11 第3章 摩擦攪拌改質對壓鑄Al-14Si合金微觀組織及顆粒沖蝕磨耗特性之影響 18 3-1 實驗方法 18 3-1-1 壓鑄Al-14Si合金之化學組成 18 3-1-2 壓鑄Al-14Si合金之摩擦攪拌試片製備 18 3-1-3 壓鑄材及攪拌材之微觀組織觀察 19 3-1-4 壓鑄材及攪拌材之沖蝕磨耗實驗 19 3-2 實驗結果與討論 20 3-2-1 壓鑄Al-14Si合金微觀組織之摩擦攪拌效應 20 3-2-2 摩擦攪拌改質對壓鑄Al-14Si合金之沖蝕磨耗阻抗的影響 21 3-3 結論 24 第4章 摩擦攪拌改質對肥粒體基球墨鑄鐵之微觀組織及顆粒沖蝕磨耗特性影響 39 4-1 實驗方法 39 4-1-1 肥粒體基球墨鑄鐵製備及基本性質 39 4-1-2 肥粒體基球墨鑄鐵之摩擦攪拌試片製備 39 4-1-3 肥粒體基試片及攪拌試片微觀組織解析方法 40 4-1-4 沖蝕磨耗球墨鑄鐵試片製備及觀察 41 4-2 實驗結果與討論 42 4-2-1 肥粒體基球墨鑄鐵微觀組織之摩擦攪拌效應 42 4-2-2 摩擦攪拌改質對肥粒體基球墨鑄鐵之沖蝕磨耗阻抗的影響 46 4-3 結論 48 第5章 總討論 70 5-1 摩擦攪拌改質對兩相複合材料之微觀組織影響 70 5-1-1 攪拌高溫及應力對基地組織的影響 70 5-1-2 摩擦攪拌製程對第二相的影響 71 5-2 兩相材料之沖蝕磨耗特性探討 71 5-2-1 不同基地組織對磨耗行為的影響 71 5-2-2 硬質與軟質第二相對磨耗行為的影響 72 第6章 總結論 75 參考文獻 76

    1. W. M. H. Thomas, GB), Nicholas, Edward D. (Haverhill, GB), Needham, James C. (Saffron Walden, GB), Murch, Michael G. (Herts, GB), Temple-smith, Peter (Cambridge, GB), Dawes, Christopher J. (Cambs, GB), "Friction welding," (The Welding Institute (Cambridge, GB), United States, 1995).
    2. K. Nakata, Y. G. Kim, H. Fujii, T. Tsumura, and T. Komazaki, "Improvement of mechanical properties of aluminum die casting alloy by multi-pass friction stir processing", Materials Science and Engineering: A 437, 274-280 (2006).
    3. Z. Y. Ma, A. L. Pilchak, M. C. Juhas, and J. C. Williams, "Microstructural refinement and property enhancement of cast light alloys via friction stir processing", Scripta Materialia 58, 361-366 (2008).
    4. H. Fujii, Y. Yamaguchi, S. Kiguchi, and K. Nogi, "Surface Hardening of Cast Irons by Friction Stir Processing", Materials Transactions 49, 2837-2843 (2008).
    5. A. S. A. Kaye, Die casting metallurgy (Kai Fa Book Company, Taiwan, 1982).
    6. 陳右昇, "ADC12壓鑄鋁合金共振疲勞壽命之可靠度分析", 國立成功大學材料科學及工程學系, 碩士論文, (民國89年)
    7. H. Yamagata, W. Kasprzak, M. Aniolek, H. Kurita, and J. H. Sokolowski, "The effect of average cooling rates on the microstructure of the Al–20% Si high pressure die casting alloy used for monolithic cylinder blocks", Journal of Materials Processing Technology 203, 333-341 (2008).
    8. P. P. Rao, and S. Putatunda, "Influence of microstructure on fracture toughness of austempered ductile iron", Metall and Mat Trans A 28, 1457-1470 (1997).
    9. 許益誌, "沃斯回火熱處理與球墨分佈對沃斯回火球墨鑄鐵沖蝕磨耗影響之探討", 國立成功大學材料科學及工程學系, 碩士論文, (民國82年)
    10. K. Kocatepe, M. Cerah, and M. Erdogan, "The tensile fracture behaviour of intercritically annealed and quenched+tempered ferritic ductile iron with dual matrix structure", Materials & Design 28, 172-181 (2007).
    11. A. H. Elsayed, M. M. Megahed, A. A. Sadek, and K. M. Abouelela, "Fracture toughness characterization of austempered ductile iron produced using both conventional and two-step austempering processes", Materials & Design 30, 1866-1877 (2009).
    12. I. Olejarczyk-Wożeńska, A. Adrian, H. Adrian, and B. Mrzygłód, "Parametric Representation of TTT Diagrams of ADI Cast Iron", Archives of Metallurgy and Materials 57 (2012).
    13. Z. Nishiyama, Martensite transformation (New York, 1978).
    14. A. Shibata, T. Murakami, S. Morito, T. Furuhara, and T. Maki, "The Origin of Midrib in Lenticular Martensite", Materials Transactions 49, 1242-1248 (2008).
    15. M. Cabibbo, E. Meccia, and E. Evangelista, "TEM analysis of a friction stir-welded butt joint of Al–Si–Mg alloys", Materials Chemistry and Physics 81, 289-292 (2003).
    16. H. G. Salem, "Friction stir weld evolution of dynamically recrystallized AA 2095 weldments", Scripta Materialia 49, 1103-1110 (2003).
    17. Y. Sato, H. Kokawa, K. Ikeda, M. Enomoto, T. Hashimoto, and S. Jogan, "Microtexture in the friction-stir weld of an aluminum alloy", Metall and Mat Trans A 32, 941-948 (2001).
    18. J.-Q. Su, T. W. Nelson, and C. J. Sterling, "Microstructure evolution during FSW/FSP of high strength aluminum alloys", Materials Science and Engineering: A 405, 277-286 (2005).
    19. R. Ueji, H. Fujii, L. Cui, A. Nishioka, K. Kunishige, and K. Nogi, "Friction stir welding of ultrafine grained plain low-carbon steel formed by the martensite process", Materials Science and Engineering: A 423, 324-330 (2006).
    20. L. Cui, H. Fujii, N. Tsuji, and K. Nogi, "Friction stir welding of a high carbon steel", Scripta Materialia 56, 637-640 (2007).
    21. H. Fujii, L. Cui, N. Tsuji, M. Maeda, K. Nakata, and K. Nogi, "Friction stir welding of carbon steels", Materials Science and Engineering: A 429, 50-57 (2006).
    22. S. H. C. Park, Y. S. Sato, H. Kokawa, K. Okamoto, S. Hirano, and M. Inagaki, "Rapid formation of the sigma phase in 304 stainless steel during friction stir welding", Scripta Materialia 49, 1175-1180 (2003).
    23. C.-P. Cheng, H.-M. Lin, and J.-C. Lin, "Friction stir welding of ductile iron and low carbon steel", Science and Technology of Welding and Joining 15, 706-711 (2010).
    24. E. Rabinowicz, Friction and wear of materials (Wiley, 1965).
    25. I. Finnie, "Some reflections on the past and future of erosion", Wear 186–187, Part 1, 1-10 (1995).
    26. I. Finnie, "Some observations on the erosion of ductile metals", Wear 19, 81-90 (1972).
    27. J. G. A. Bitter, "A study of erosion phenomena part I", Wear 6, 5-21 (1963).
    28. J. G. A. Bitter, "A study of erosion phenomena: Part II", Wear 6, 169-190 (1963).
    29. I. Finnie, "Erosion of surfaces by solid particles", Wear 3, 87-103 (1960).
    30. I. Finnie, J. Wolak, and Y. Kabil, "Erosion of metals by solid particles", Journal of Materials 2, 682-& (1967).
    31. G. P. Tilly, and W. Sage, "The interaction of particle and material behaviour in erosion processes", Wear 16, 447-465 (1970).
    32. S. K. Hovis, J. Talia, and R. O. Scattergood, "Erosion mechanisms in aluminum and Al-Si alloys", Wear 107, 175-181 (1986).
    33. W. H. Jennings, W. J. Head, and C. R. Manning Jr, "A mechanistic model for the prediction of ductile erosion", Wear 40, 93-112 (1976).
    34. A. P. Harsha, and D. K. Bhaskar, "Solid particle erosion behaviour of ferrous and non-ferrous materials and correlation of erosion data with erosion models", Materials & Design 29, 1745-1754 (2008).
    35. H. Wensink, and M. C. Elwenspoek, "A closer look at the ductile–brittle transition in solid particle erosion", Wear 253, 1035-1043 (2002).
    36. K. H. Z. Gahr, "Wear by hard particles", Tribology International 31, 587-596 (1998).
    37. H. Le Khac, and P. G. Shewmon, "Effects of hardness on the solid particle erosion mechanisms in AISI 1060 steel", Wear 89, 291-302 (1983).
    38. A. Magnée, "Generalized law of erosion: application to various alloys and intermetallics", Wear 181–183, Part 2, 500-510 (1995).
    39. F. Y. Hung, L. H. Chen, and T. S. Lui, "A study on erosion of upper bainitic ADI and PDI", Wear 260, 1003-1012 (2006).
    40. S. Das, D. P. Mondal, and S. Sawla, "Solid particle erosion of Al alloy and Al-alloy composites: Effect of heat treatment and angle of impingement", Metall and Mat Trans A 35, 1369-1379 (2004).
    41. Y. I. Oka, H. Ohnogi, T. Hosokawa, and M. Matsumura, "The impact angle dependence of erosion damage caused by solid particle impact", Wear 203–204, 573-579 (1997).
    42. A. Levy, M. Aghazadeh, and G. Hickey, "The effect of test variables on the platelet mechanism of erosion", Wear 108, 23-41 (1986).
    43. Y. Maozhong, H. Baiyun, and H. Jiawen, "Erosion wear behaviour and model of abradable seal coating", Wear 252, 9-15 (2002).
    44. I. M. Hutchings, and R. E. Winter, "Particle erosion of ductile metals: A mechanism of material removal", Wear 27, 121-128 (1974).
    45. G. Sundararajan, and P. G. Shewmon, "A new model for the erosion of metals at normal incidence", Wear 84, 237-258 (1983).
    46. I. M. Hutchings, "A model for the erosion of metals by spherical particles at normal incidence", Wear 70, 269-281 (1981).
    47. R. E. Winter, and I. M. Hutchings, "The role of adiabatic shear in solid particle erosion", Wear 34, 141-148 (1975).
    48. R. E. Winter, and I. M. Hutchings, "Solid particle erosion studies using single angular particles", Wear 29, 181-194 (1974).
    49. Y. I. Oka, S. Mihara, and T. Yoshida, "Impact-angle dependence and estimation of erosion damage to ceramic materials caused by solid particle impact", Wear 267, 129-135 (2009).
    50. S. Johansson, F. Ericson, and J.-Å. Schweitz, "Solid particle erosion — a statistical method for evaluation of strength properties of semiconducting materials", Wear 115, 107-120 (1987).
    51. J. Zeng, and T. J. Kim, "An erosion model of polycrystalline ceramics in abrasive waterjet cutting", Wear 193, 207-217 (1996).
    52. J. L. Routbort, R. O. Scattergood, and A. P. L. Turner, "The erosion of reaction-bonded SiC", Wear 59, 363-375 (1980).
    53. K. Yıldızlı, M. B. Karamış, and F. Nair, "Erosion mechanisms of nodular and gray cast irons at different impact angles", Wear 261, 622-633 (2006).
    54. S. S. Aptekar, and T. H. Kosel, Erosion of white cast irons and stellite (1985).
    55. A. J. Ninham, and A. V. Levy, "The erosion of carbide-metal composites", Wear 121, 347-361 (1988).
    56. Y. W. Shin, G. A. Sargent, and H. Conrad, "Effects of microstructure on the erosion of Al-Si alloys by solid particles", MTA 18, 437-450 (1987).
    57. 劉中偉, "片狀石墨鑄鐵與鋁-矽系合金之矽砂沖蝕磨耗特性研究", 國立成功大學材料科學及工程學系, 博士論文, (民國87年)
    58. M. Elmadagli, T. Perry, and A. T. Alpas, "A parametric study of the relationship between microstructure and wear resistance of Al–Si alloys", Wear 262, 79-92 (2007).
    59. J. P. Tu, J. Pan, M. Matsumura, and H. Fukunaga, "The solid particle erosion behavior of Al18B4O33 whisker-reinforced AC4C al alloy matrix composites", Wear 223, 22-30 (1998).
    60. D. P. Mondal, S. Das, A. K. Jha, and A. H. Yegneswaran, "Abrasive wear of Al alloy–Al2O3 particle composite: a study on the combined effect of load and size of abrasive", Wear 223, 131-138 (1998).
    61. Y. Iwai, T. Honda, T. Miyajima, Y. Iwasaki, M. K. Surappa, and J. F. Xu, "Dry sliding wear behavior of Al2O3 fiber reinforced aluminum composites", Composites Science and Technology 60, 1781-1789 (2000).
    62. K. P. Balan, A. V. Reddy, V. Joshi, and G. Sundararajan, "The influence of microstructure on the erosion behaviour of cast irons", Wear 145, 283-296 (1991).
    63. 戴文雄, "石墨鑄鐵的電漿電弧表面重熔改質及矽砂沖蝕磨耗研究", 國立成功大學材料科學及工程學系, 博士論文, (民國89年)
    64. 葉聰海, "鑄鐵的石墨型態及基地組織對氧化矽顆粒沖蝕磨耗影響之探討", 國立成功大學材料科學及工程學系, 碩士論文, (民國84年)
    65. Y. I. Oka, M. Matsumura, and T. Kawabata, "Relationship between surface hardness and erosion damage caused by solid particle impact", Wear 162–164, Part B, 688-695 (1993).
    66. K. Shimizu, and T. Noguchi, "Erosion characteristics of ductile iron with various matrix structures", Wear 176, 255-260 (1994).
    67. L. C. Chang, I. C. Hsui, L. H. Chen, and T. S. Lui, "A study on particle erosion behavior of ductile irons", Scripta Materialia 52, 609-613 (2005).
    68. C. H. Chen, C. J. Altstetter, and J. M. Rigsbee, "Laser Processing of Cast Iron for Enhanced Erosion Resistance", MTA 15, 719-728 (1984).
    69. 洪飛義, "矽含量及基地組織對球墨鑄鐵顆粒沖蝕磨耗行為之影響", 國立成功大學材料科學及工程學系, 博士論文, (民國91年)
    70. R. Nandan, T. Debroy, and H. Bhadeshia, "Recent advances in friction-stir welding – Process, weldment structure and properties", Progress in Materials Science 53, 980-1023 (2008).
    71. M. Kral, "Identification of intermetallic phases in a eutectic Al?Si casting alloy using electron backscatter diffraction pattern analysis", Scripta Materialia 51, 215-219 (2004).
    72. Y. J. Kwon, N. Saito, and I. Shigematsu, "Friction stir process as a new manufacturing technique of ultrafine grained aluminum alloy", Journal of Materials Science Letters 21, 1473-1476 (2002).
    73. L. Karthikeyan, V. S. Senthilkumar, and K. A. Padmanabhan, "On the role of process variables in the friction stir processing of cast aluminum A319 alloy", Materials & Design 31, 761-771 (2010).
    74. J. Aranzabal, I. Gutierrez, and J. J. Urcola, "Influence of heat treatments on microstructure of austempered ductile iron", Materials Science and Technology 10, 728-737 (1994).
    75. Y. Chen, C. H. Gan, L. X. Wang, G. Yu, and A. Kaplan, "Laser surface modified ductile iron by pulsed Nd:YAG laser beam with two-dimensional array distribution", Applied Surface Science 245, 316-321 (2005).
    76. Y. Ueda, and N. Wade, "Expansion of Spheroidal Graphite Cast Iron during Reverse Transformation", THE JOURNAL OF THE JAPAN FOUNDRYMEN'S SOCIETY 49, 25-30 (1977).
    77. A. A. Zhukov, "Thermodynamics of microsegregation and influence of elements on structure of unalloyed and alloyed cast iron", Metal Science 12, 521-524 (1978).
    78. R. C. Voigt, and C. R. Loper, "Austempered ductile iron—process control and quality assurance", J. Heat Treating 3, 291-309 (1984).
    79. M. Wessén, and I. Svensson, "Modeling of ferrite growth in nodular cast iron", Metall and Mat Trans A 27, 2209-2220 (1996).
    80. R. Bellman Jr, and A. Levy, "Erosion mechanism in ductile metals", Wear 70, 1-27 (1981).
    81. I. Charit, and R. S. Mishra, "Abnormal grain growth in friction stir processed alloys", Scripta Materialia 58, 367-371 (2008).
    82. S. Mironov, Y. S. Sato, and H. Kokawa, "Microstructural evolution during friction stir-processing of pure iron", Acta Materialia 56, 2602-2614 (2008).
    83. K. C. Goretta, R. C. Arroyo, C. T. Wu, and J. L. Routbort, "Erosion of work-hardened copper, nickel, and 304 stainless steel", Wear 147, 145-154 (1991).

    下載圖示 校內:2015-09-12公開
    校外:2016-09-12公開
    QR CODE