| 研究生: |
潘妍如 Pan, Yen-Ru |
|---|---|
| 論文名稱: |
A型流感病毒NEP的蛋白質體學及NEP對粒線體ATP合成酶在ATP能量產生及病毒繁衍的可能交互作用 The proteome of Influenza A virus NEP protein and its possible interactions to the mitochondria ATP synthase for viral egression |
| 指導教授: |
王憲威
Wang, Shainn-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | A型流感病毒 、NEP蛋白 、ATP合成酶 、F1次單元體 、ATP濃度 、第一型干擾素 |
| 外文關鍵詞: | Type A Influenza virus, NEP (NS2): nuclear export protein, ATP synthase F1α/β subunits, ATP level down-regulation, type I inteferon |
| 相關次數: | 點閱:189 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
流行性感冒A型病毒中包含有八段負股RNA基因組,其中第八段RNA基因會經由轉錄合成出mRNA,進而轉譯出第一型非結構性蛋白non-structural protein 1,而第八段RNA基因所產生的mRNA也會經由選擇性剪切形成另一切割形式的mRNA,製造另一個非結構性蛋白質 non-structural protein 2 (NS2)又稱為Nuclear export protein (NEP)。這些蛋白主要會影響病毒複製和傳播,所以在病毒毒性扮演重要角色。而今已知NS1為多功能調控性蛋白,在病毒生活史上較廣為所知,例如它可促進病毒RNA 複製,並可抑制宿主細胞第一型干擾素 (Type I Interferon),然而目前研究僅知道NEP蛋白在參與病毒RNP (viral ribonucleoprotein)之核質運送。其可能扮演的角色及有交互作用的細胞蛋白並不清楚,為了進一步研究NEP在病毒中和宿主細胞中所參與的機制,及與其有交互作用的細胞蛋白有整體性的瞭解,我們利用串聯親和標籤蛋白純化技術及蛋白質體學尋找這些蛋白,並發現近流感A型病毒中NEP會和18個可能有交互作用的細胞蛋白。這些宿主細胞蛋白依功能可分為:細胞訊息核酸蛋白複合物之傳移、II型核酸聚合酶之轉錄調控、JAK磷酸酶之訊息傳導、及ATP之平衡調控相關。其中前二大類之功能性與已知的流感病毒 RNA之複製及運送非常相關,後二大類則可能與細胞命運,細胞激素調控或助長病毒複製滋長相關。為了印證NEP蛋白質體學中NEP 和 ATP合成酶交互作用,首先我們以免疫共沉澱法及免疫螢光染色先確認NEP 和 ATP合成酶會結合在一起。NEP和粒線體ATP合成酶交互作用也令我們好奇是否影響細胞免疫功能或造成細胞壓力而產生凋亡。另外在前人研究中發現有嗜菌體或病毒可能會產生與ATP合成酶相似結構的蛋白,這些蛋白與病毒核糖核酸結合後會將遺傳物質運送進入新病毒顆粒中,對於病毒繁衍非常重要。在此我們報導NEP可和粒線體中的ATP合成酶 F1 聚合體中 α 及 β次單元體產生交互作用,我們認為他們的功用主要是在幫助病毒繁衍並且會降低細胞內的ATP 濃度,但卻不影響粒線體膜電位的缺失,也不會造成細胞ROS的增加與細胞凋亡。我們證明了NEP和ATP合成酶的結合不只對細胞中ATP濃度造成影響,我們的結果中也發現NEP蛋白可以抑制宿主細胞第一型干擾素,並且調降細胞中ATP能量產生,而這也讓我們知道NEP在幫助A型流行性感冒病毒的毒性、繁衍及傳播上也扮演著重要角色。
The 8th genome segment of Influenza A Viruses (IAV) directs the synthesis of a collinear mRNA encoding for the non-structural protein 1 (NS1) and a spliced mRNA encoding for the nuclear export protein (NEP). While NS1 is largely known as a multi-regulatory factor in facilitating viral RNA replication and antagonizing host Inteferon response, little has been reported regarding the insight contribution of NEP and its cellular partners upon IAV replication. To gain a systemic view of cellular proteins participated in NEP-mediated activities, a Tandem Affinity Tag Purification based proteomic approach was employed and has identified 18 candidates with functional relevance in RNP trafficking, Pol-II transcriptional control, Janus kinase (JAK) signaling, or mitochondria ATP regulation. The first two categories match the predicted role of NEP in vRNA replication and nucleo-cytoplasmic transport of viral RNPs, while the last two categories may accord with novel activities of NEP in cell fates or cytokine regulation for viral multiplication. We report here that NEP interacts with mitochondria ATPsynthase F1 α/β subunits by co-immunoprecipitation assay and a confocal imaging analysis. In addition, NEP downregulated cellular ATP level, but did not affect mitochondria membrane potential or cause cellular ROS and apoptosis. As IAV, unlike many RNA viruses, lack of self-equipped motors similar to the α subunit of F1 to package their genomes, whether NEP hijacks ATP5synthase for vRNP packaging is under investigation. In addition, NEP antagonized type-1 IFN response, whether this links to the down regulated ATP level or the interference of JAK signaling pathway require further investigation. Collectively, our results reveal NEP as a multi-regulatory factor to influence ATP homeostasis and facilitate IAV egression and induced pathogenesis.
Akarsu H, Burmeister WP, Petosa C, Petit I, Muller CW, Ruigrok RW, Baudin F (2003) Crystal structure of the M1 protein-binding domain of the influenza A virus nuclear export protein (NEP/NS2). EMBO J 22: 4646-4655
Alonso-Caplen FV, Nemeroff ME, Qiu Y, Krug RM (1992) Nucleocytoplasmic transport: the influenza virus NS1 protein regulates the transport of spliced NS2 mRNA and its precursor NS1 mRNA. Genes Dev 6: 255-267
Amorim MJ, Read EK, Dalton RM, Medcalf L, Digard P (2007) Nuclear export of influenza A virus mRNAs requires ongoing RNA polymerase II activity. Traffic 8: 1-11
Arnoult D, Parone P, Martinou JC, Antonsson B, Estaquier J, Ameisen JC (2002) Mitochondrial release of apoptosis-inducing factor occurs downstream of cytochrome c release in response to several proapoptotic stimuli. J Cell Biol 159: 923-929
Baudin F, Bach C, Cusack S, Ruigrok RW (1994) Structure of influenza virus RNP. I. Influenza virus nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent. EMBO J 13: 3158-3165
Boulo S, Akarsu H, Ruigrok RW, Baudin F (2007) Nuclear traffic of influenza virus proteins and ribonucleoprotein complexes. Virus Res 124: 12-21
Elton D, Simpson-Holley M, Archer K, Medcalf L, Hallam R, McCauley J, Digard P (2001) Interaction of the influenza virus nucleoprotein with the cellular CRM1-mediated nuclear export pathway. J Virol 75: 408-419
Enami M (1997) [Structure and function of influenza virus NS1 and NS2 proteins]. Nippon Rinsho 55: 2605-2609
Enserink M, Kaiser J (2004) Virology. Avian flu finds new mammal hosts. Science 305: 1385
Gresser MJ, Myers JA, Boyer PD (1982) Catalytic site cooperativity of beef heart mitochondrial F1 adenosine triphosphatase. Correlations of initial velocity, bound intermediate, and oxygen exchange measurements with an alternating three-site model. J Biol Chem 257: 12030-12038
Houstek J, Pickova A, Vojtiskova A, Mracek T, Pecina P, Jesina P (2006) Mitochondrial diseases and genetic defects of ATP synthase. Biochim Biophys Acta 1757: 1400-1405
Iwatsuki-Horimoto K, Horimoto T, Fujii Y, Kawaoka Y (2004) Generation of influenza A virus NS2 (NEP) mutants with an altered nuclear export signal sequence. J Virol 78: 10149-10155
Jackson D, Killip MJ, Galloway CS, Russell RJ, Randall RE (2010) Loss of function of the influenza A virus NS1 protein promotes apoptosis but this is not due to a failure to activate phosphatidylinositol 3-kinase (PI3K). Virology 396: 94-105
Kido H, Murakami M, Oba K, Chen Y, Towatari T (1999) Cellular proteinases trigger the infectivity of the influenza A and Sendai viruses. Mol Cells 9: 235-244
Kolpashchikov DM, Honda A, Ishihama A (2004) Structure-function relationship of the influenza virus RNA polymerase: primer-binding site on the PB1 subunit. Biochemistry 43: 5882-5887
Leost M, Schultz C, Link A, Wu YZ, Biernat J, Mandelkow EM, Bibb JA, Snyder GL, Greengard P, Zaharevitz DW, Gussio R, Senderowicz AM, Sausville EA, Kunick C, Meijer L (2000) Paullones are potent inhibitors of glycogen synthase kinase-3beta and cyclin-dependent kinase 5/p25. Eur J Biochem 267: 5983-5994
Liang Y, Cheng JJ, Yang B, Huang J (2010) The role of F1 ATP synthase beta subunit in WSSV infection in the shrimp, Litopenaeus vannamei. Virol J 7: 144
Lin D, Lan J, Zhang Z (2007) Structure and function of the NS1 protein of influenza A virus. Acta Biochim Biophys Sin (Shanghai) 39: 155-162
Liu Y, Lou Z, Bartlam M, Rao Z (2009) Structure-function studies of the influenza virus RNA polymerase PA subunit. Sci China C Life Sci 52: 450-458
Mancini EJ, Kainov DE, Grimes JM, Tuma R, Bamford DH, Stuart DI (2004) Atomic snapshots of an RNA packaging motor reveal conformational changes linking ATP hydrolysis to RNA translocation. Cell 118: 743-755
Maurizi CP (2002) Postencephalitic Parkinson's disease, amyotrophic lateral sclerosis on Guam and influenza revisited: focusing on neurofibrillary tangles and the trail of tau. Med Hypotheses 58: 198-202
Min JY, Subbarao K (2010) Cellular targets for influenza drugs. Nat Biotechnol 28: 239-240
Neumann G, Hughes MT, Kawaoka Y (2000) Influenza A virus NS2 protein mediates vRNP nuclear export through NES-independent interaction with hCRM1. EMBO J 19: 6751-6758
Nonaka I (2001) [Complex V (ATP synthase) deficiency]. Ryoikibetsu Shokogun Shirizu: 142-143
O'Neill RE, Talon J, Palese P (1998) The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins. EMBO J 17: 288-296
Perdue ML, Garcia M, Senne D, Fraire M (1997) Virulence-associated sequence duplication at the hemagglutinin cleavage site of avian influenza viruses. Virus Res 49: 173-186
Petersdorf RG, Fusco JJ, Harter DH, Albrink WS (1959) Pulmonary infections complicating Asian influenza. AMA Arch Intern Med 103: 262-272
Schon EA, Santra S, Pallotti F, Girvin ME (2001) Pathogenesis of primary defects in mitochondrial ATP synthesis. Semin Cell Dev Biol 12: 441-448
Shimizu T, Takizawa N, Watanabe K, Nagata K, Kobayashi N (2010) Crucial role of the influenza virus NS2 (NEP) C-terminal domain in M1 binding and nuclear export of vRNP. FEBS Lett
Soubannier V, McBride HM (2009) Positioning mitochondrial plasticity within cellular signaling cascades. Biochim Biophys Acta 1793: 154-170
Stein CA, Colombini M (2008) Specific VDAC inhibitors: phosphorothioate oligonucleotides. J Bioenerg Biomembr 40: 157-162
Su Y, Sun H, Fang J, Hu G, Xiao M (2010) Brain mitochondrial dysfunction in ovariectomized mice injected with D-galactose. Neurochem Res 35: 399-404
Szendroedi J, Roden M (2008) Mitochondrial fitness and insulin sensitivity in humans. Diabetologia 51: 2155-2167
Terni B, Boada J, Portero-Otin M, Pamplona R, Ferrer I (2010) Mitochondrial ATP-synthase in the entorhinal cortex is a target of oxidative stress at stages I/II of Alzheimer's disease pathology. Brain Pathol 20: 222-233
White BC, Sullivan JM, DeGracia DJ, O'Neil BJ, Neumar RW, Grossman LI, Rafols JA, Krause GS (2000) Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci 179: 1-33
Yoshimoto K, Arora K, Brooks CL, 3rd (2010) Hexameric helicase deconstructed: interplay of conformational changes and substrate coupling. Biophys J 98: 1449-1457