| 研究生: |
林宮正 Lin, Kung-Cheng |
|---|---|
| 論文名稱: |
玻璃基板上雷射低溫成長多晶矽薄膜之金屬-絕緣層-半導體蕭特基二極體式低成本高感度高速氫氣感測器的研製 Characterization and Preparation of Low Temperature Poly-silicon (LTPS) Thin Film Metal-Insulation-Semiconductor Schottky Diode-Type Low Cost High Sensitivity Hydrogen Sensors |
| 指導教授: |
高泉豪
Kao, Chuan-Haur 方炎坤 Fang, Yean-Kuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 氫氣 、低溫多晶 、蕭特基 、半導體 、感測器 |
| 外文關鍵詞: | hydrogen, sensors, LTPS, Schottky, semiconductor |
| 相關次數: | 點閱:93 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係探討利用準分子雷射退火(Excimer Laser Annealing, ELA)技術在玻璃基板成長的低溫多晶矽薄膜上研製低成本高性能MIS蕭特基二極體式氫氣感測器。由實驗結果,我們發現金-半接面結構會受到矽化物與界面態位的控制,使得蕭特基能障高度較不受極化氫原子的影響,因而導致氫氣感測能力差,故須添加絕緣層來改善。而在金屬-絕緣層-半導體接面結構中,則以TiO2作為絕緣層材料的感測元件特性最佳。該元件在逆偏壓1V與氫氣濃度100ppm的操作環境下,呈現2500%的靈敏度及36秒的反應時間(response time),並顯示很好的再現性與選擇性。
此外吾人並研究利用磷摻雜、硼摻雜及氮電漿處理來改善薄特性,其中以磷摻雜表現的特性最佳。另外在薄膜表面不同粗糙度對元件特性的影響研究中發現粗糙的薄膜表面會有較佳的感測特性。
最後,在27°C、70°C與110°C的溫度變化試驗中,發現較高的操作溫度有助於感測元件的反應速度,但同時會降低靈敏度。
In this thesis, we used the excimer laser annealing(ELA) prepare low temperature poly-silicon thin film on glass substrate to fabricate the MIS Schottky diode-type low cost and high sensitivity hydrogen sensors. The experimental results show the Pd/TiO2/Si MIS Schottky diode has the highest sensitivity (2500%), fast response time τr (36sec), good reliability, and selectivity under 1V reverse bias and 100ppm hydrogen.
Besides, we improved the property of poly-silicon thin film with Phosphorous doping, Boron doping, and nitrogen plasma treatment, and find the Phosphorous doping gains the best improvement. Moreover, a rough surface in poly-Si thin film can enhances the sensitivity.
Furthermore, we find the sensor operated in a high temperature got fast time response, but lowers sensitivity at the same time.
[1] R. C. Weast: Handbook of Chemistry and Physics (CRC Press, Cleveland, 1976) p. D-107.
[2] I. Lundström, S. Shivaraman, C. Svensson, and L. Lundkvist, “A hydrogen-sensitive MOS field effect transistor,” Appl. Phys. Lett., vol. 26, pp. 55-57, 1975.
[3] M. C. Steele, J. W. Hile, and B. A. Maciver, “Hydrogen-sensitive palladium gate MOS capacitors,” J. Appl. Phys., vol. 47, pp. 2537-2538, 1976.
[4] K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A Hydrogen Sensing Pd/InGaP Metal-Semiconductor (MS) Schottky Diode Hydrogen 33 Sensor,” Semicond. Sci. Technol., vol. 18, pp.615-619, 2003.
[5] P.F. Ruths, S. Ashok, S.J. Fonash, and J.M. Ruths, “A Study of Pd/Si MIS Schottky Barrier Diode Hydrogen Detector,” IEEE transactions on electro devices, vol. ed-28, NO. 9, 1981.
[6] S. Basu and A. Dutta, “Room-temperature hydrogen sensors based on ZnO,” Mat. Chem. Phys., vol. 47, pp. 93-96, 1997.
[7] D. Dwivedi, R. Dwivedi, S.K. Srivastava, “The effect of hydrogen-induced interface traps on a titanium dioxide-based palladium gate MOS capacitor (Pd-MOSC) a conductance study,” Microelectronics Journal, 29, pp.445-450, 1998.
[8] A Spetz, M Armgarth, I Lundström, “Hydrogen and ammonia response of metal-silicon dioxide-silicon structures with thin platinum gates,” J. Appl. Phys., vol 64, 3, pp. 1274-1283, 1988.
[9] F. Qiu, W. Shin, M. Matsumiya, N. Izu, and N. Murayama, “Hydrogen Sensor Based on RF-Sputtered Thermoelectric SiGe Film,” J. Appl. Phys., vol. 42, pp. 1563-1567, 2003.
[10] W.C. Liu, H.J. Pan, H.I. Chen, K.W. Lin, S.Y. Cheng, and K.H. Yu, “Hydrogen-Sensitive Characteristics of a Novel Pd/InP MOS Schottky Diode Hydrogen Sensor,” IEEE transactions on electro devices, vol. 48, NO. 9, 2001.
[11] J. Schalwig, G. Muller, U. Karrer, M. Eickhoff, O. Ambacher, M. Stutzmann, L.Görgens, and G. Dollinger., “Hydrogen response mechanism of Pt-GaN Schottky diodes,” Appl. Phys. Lett., vol. 80, pp. 1222-1224, 2002.
[12] A. Arbab, A. Spetz, and I. Lundström., “Gas sensors for high temperature operation based on metal oxide silicon carbide (MOSiC) devices,” Sens. Actuators B., vol. 15-16, pp. 19-23, 1993.
[13] G. Fortunato, L. Mariucci, R. Carluccio, A. Pecora and V. Foglietti, “Excimer Laser Crystallization Techniques for Polysilicon TFTs” Applied Surface Science, vol. 154-155, pp.95-104, 2000.
[14] 范盛宏, “金誘發非晶矽薄膜橫向結晶層之研製及特性分析” , 國立成功大學電機工程學系碩士論文,1999。
[15] S.J. Moon, M. Lee and C. P. Grigoropoulos, “Heat Transfer and Phase Transformations in Laser Annealing of Thin Si Films” Journal of Heat Transfer, vol. 124, pp.253-264, 2002.
[16] A. Hadjadj, L. Boufendi, S. Huet, S. Schelz, P. Roca i Cabarrocas, H. Estrade-Szwarckopf and B. Rousseau, “Role of the Surface Roughness in Laser Induced Crystallization of Nanostructured Silicon Films,” J. Vac. Sci. Technol., A 18(2), pp.529-535, 2000.
[17] J. S. Im, M. A. Crowder, R. S. Sposili, J. P. Leonard, H. J. Kim, J. H. Yoon, V. V. Gupta, H. Jin Song and H. S. Cho, “Controlled Super-Lateral Growth of Si Films for Microstructural Manipulation and Optimization” phys. stat. sol.(a), vol. 166, pp.603-617, 1998.
[18] V. L. Rideout, “A Review of the Theory, Technology and Applications of Metal-Semiconductor Rectifiers,” Thin Solid Film, 48,261, 1978.
[19] S. M. Sze, “Physics of semiconductor devices”ch5, pp. 246-293, wiley, New York, 1980.
[20] Neamen, “Semiconductor physics and device”ch9, pp. 336, McGraw-Hill, 1992.
[21] W. P. Kang and Y. Gürbüz, “Comparison and analysis of Pd- and Pt-GaAs Schottky diodes for hydrogen detection,” J. Appl. Phys., vol. 75, pp. 8175-8181, 1994.
[22] I. Lundström, M. Armgarth, and L. G.. Petersson, “Physics with catalytic metal gate chemical sensors,” CRC Crit. Rev. Solid State Mater. Sci., vol. 15, pp. 201, 1989.
[23] I. Lundström, “Hydrogen sensitive MOS-structures part1: principles and applications,” Sens. Actuators, vol.1, pp.403-426, 1981.
[24] W. P. Kang and Y. Gürbüz, “Comparison and analysis of Pd- and Pt-GaAs Schottky diodes for hydrogen detection,” J. Appl. Phys., vol. 75, pp. 8175-8181, 1994.
[25] R. J. Silbey and R.A. Alberty, “Physical chemistry-3rd,” John Willey & Sons, New York, 2001.
[26] F. A. Lewis, “The Palladium-Hydrogen System,” New York:Academic Press, ch. 1,4,1967.
[27] M.S. Shivaraman, I. Lundström, C. Svensson, H. Hammarsten, “Hydrogen sensitivity of palladium-thin-oxide-silicon Schottky barriers,” Electron. Lett., 12, pp.484-485, 1976.
[28] H. Kobayashi, H. Iwadate, and Y. Nakato, “Role and mechanism of the formation of hydrogen-induced interface states for platinum/silicon oxide/silicon MOS tunneling diodes,” Sens. Actuators B, 24-25, pp. 815-818. 1995.
[29] M.A. Formoso, G. J. Maclay, “The effect of hydrogen and carbon monoxide on the interface state density in MOS gas sensors with ultra thin palladium gates,” Sens. Actuators B, 2, pp. 2-4, 1990.
[30] M. Armgarth, “Hydrogen induce oxide surface charging in Pd-gate MOS device,” J. Appl. Phys., vol 56, 1984.
[31] Y. K. Fang, S. B. Hwang, C. Y. Lin, and C. C. Lee, “Trench Pd/Si metal/oxide/ semiconductor Schottky barrier diode for a high sensitivity hydrogen gas sensor,” Appl. Phys. Lett., 57 (25), 1990.
[32] Pere Roca i Cabarrocas, A. Fontcuberta I Morral, B. Kalache, and S. Kasouit, “Microcrystalline Silicon Thin Films Grown by PECVD Growth Mechanisms and Grain Size Control,” Solid State Phenomena, vol. 93, pp. 257-268, 2003.
[33] I. W. Wu, T. Y. Huang, W. B. Jackson, A. G. Lewis, and A. Chiang, “Passivation Kinetics of Two Types of Defects in Polysilicon TFT by Plasma Hydrogenation,” IEEE Electron Dev. Lett., EDL-12, 181, 1991.
[34] X. L. Jiang, Y. L. He, H. L. Zhu, “The effect of passivation of boron dopants by hydrogen in nano-crystalline and micro-crystalline silicon films” J. Phys.: Condens. Matter 6, pp. 713-718, 1994.
[35] T.C. McGill, “Phenomenology of metal-semiconductor electrical barrier,” J. Vac. Sci. Technol., vol. 11, pp. 935-942, 1974.
[36] L. L. Tongson, B. E. Knox, T. E. Sullivan, and S. J. Fonash, “Comparative study of chemical and polarization characteristics of Pd/Si and Pd/SiOx/Si Schottky-barreir type devive,” J. Appl. Phys., vol. 50, pp. 1535-1537, 1979.
[37] G. Y. Robinson, “Palladium silicide formation observed by Auger electron spectroscopy,” Appl. Phys. Lett., vol. 25, no 3, pp. 158-160, 1974.
[38] S Kim, B.S. Kang, F. Ren, K. Ip, Y.W. Heo, D.P. Norton, and S.J. Pearton, “Sensitivity of Pt/ZnO Schottky diode characteristics to hydrogen,” Appl. Phys. Lett., vol. 84, pp. 1698-1700,2004.
[39] Chris G. Van de Walle, “Hydrogen as a Cause of Doping in Zinc Oxide,” Phys. Rev. Lett., vol 85, pp. 1012 – 1015, 2000.
[40] D.K. Fork, G.B. Anderson, J.B. Boyce, R.I. Johnson, and P. Mei, “Capillary waves in pulsed excimer laser crystallized amorphous silicon,” Appl. Phys. Lett., Vol. 68, pp. 2138-2140, 1996.
[41] H.T. Chen, Y.C. Chen, J.X. Lin, S.I. Hsieh, and Y.C. King, “Roughness Effect on Uniformity and Reliability of Sequential Lateral Solidified Low-Temperature Polycrystalline Silicon Thin-Film Transistor,” Electrochemical and Solid-State Letter, vol. 9, 8, H81-H83, 2006.
[42] M.J. Tsai and H.C. Cheng, “Hydrogen Passivation of Thin Film Transistors with Different Film Structures,” Tech. Rep. IEICE, vol. 93, 25, 1993.
[43] S. M. Sze, “Physics of semiconductor devices,” ch1, pp. 30-32, wiley, New York, 1980.
[44] E.F. McCullen, H.E. Prakasam, Wenjun Mo, R. Naik, K.Y. S. Ng, L. Rimai, and G.W. Auner, “Electrical characterization of metal/AIN/Si thin film hydrogen sensors with Pd and Al gates,” J. Appl. Phys., vol. 93, pp. 5757-5762, 2003.
[45] D. Dwivedi, R. Dwivedi, S.K. Srivastava, “Sensing properties of palladium-gate MOS (Pd-MOS) hydrogen sensor-based on plasma grown silicon dioxide,” Sens. Actuators B, 71, pp. 161-168. 1998.