簡易檢索 / 詳目顯示

研究生: 李展良
Lee, Chan-Liang
論文名稱: 以類神經網路為基礎建立類股預測系統
Developing a Forecasting System for Sector Index based on Neural Networks
指導教授: 王泰裕
Wang, Tai-Yue
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 97
中文關鍵詞: 類股走勢預測效率市場假說行為金融學類神經網路
外文關鍵詞: Sector Index Prediction, Efficient Market Hypothesis, Behavioral Finance, Neural Networks
相關次數: 點閱:49下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金融議題一向備受大眾所關注,無數投資人前仆後繼地探查潛在的獲利機會,並有企業管理階層和政府持續關注股票市場的動態變化,以便提前應對危機狀況,而若可針對各大產業之類股指數走勢進行預測,提前獲悉未來產業波動,對於每一名參與或關注市場的決策者而言,此類的預測資訊將會是一大瑰寶。然而,考量到市場中存在許多內、外生變數和干擾因子,致使過往研究的預測結果難以與實際走勢完全吻合,或僅用於特定時段或特定標的,因而使類股預測成為一道難題。近年來,受益於類神經網路的蓬勃發展,其良好的分類及預測性能引發各界廣大迴響,許多人開始以類神經網路預測股票市場。本研究認為,若能選擇適當的類股相關資料作為預測因子,並以類神經網路精確分析資料與未來走勢間的關係,類股預測的進一步突破將指日可待。因此,本研究建立一套類股預測系統,以效率市場假說和行為金融學作為理論基礎,選定技術指標、基本面指標和社群媒體,建立多樣化的輸入資料組合以增加預測因子之代表性;另外,本研究擬憑藉類神經網路卓越的運算能力,以此作為核心基礎,分別設計資料分析模型和走勢預測模型,前者旨在從原始資料集中萃取關鍵特徵資料,後者則整合特徵資料,並以此預測未來類股走勢方向和幅度,使類股預測系統具備揭示金融市場中特定產業未來波動變化的用途,以提供有品質的預測結果供所有決策者參考。最終研究結果揭示,在所有類神經網路中,時間卷積網路無論在特徵萃取或走勢預測上均表現最佳,因此作為本研究建立類股預測系統的基底模型,並在所有情境下皆擁有突出表現,顯示本研究在類股走勢預測上得以克服過往預測方法之不足,藉由將系統拆分為兩階段模型,提供更加有效的類股走勢預測結果,同時也證實多樣化的輸入資料組合可進一步提升預測準確度。

    Accurate prediction of sector index direction has always been important and invaluable to every decision-maker in the financial market. Consequently, investors, corporate management and government officials continuously monitor the stock market, trying to identify trends to meet their respective needs. However, due to the endogenous and exogenous variables, past research often fails to correctly forecast trends because of the use of inappropriate data and inaccurate methods for combining predictive factors. In this study, we develop a forecasting system that integrates three critical predictive factors: technical indicators, fundamental indicators, and social media data, to predict the movement direction of S&P 500 Information Technology sector index. The selection of these factors is based on efficient market hypothesis and behavioral finance to explain stock market behavior and enhance the representativeness of predictive factors. Additionally, we applied several neural networks to build up a data analysis model and a trend prediction model. The former accurately analyze the relationship between raw data and sector index trends, extracting key features, while the latter integrates these features to forecast future sector index trends. The results indicate that across all scenarios, our system outperforms XGBoost, SVM, Random Forest, and DNN, consistently demonstrating outstanding performance according to accuracy, MCC, and MSE. This method overcomes the limitations of previous approaches, offering more effective sector index trend predictions by splitting the system into two-stage models. Moreover, we also confirm that a diversified data set can further enhance prediction accuracy.

    摘要 i 誌謝 xi 表目錄 xiv 圖目錄 xvi 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 3 第三節 研究範圍與假設 4 第四節 研究流程 4 第五節 研究架構 5 第二章 文獻探討 6 第一節 效率市場假說與行為金融學 6 第二節 股票預測 9 第三節 類神經網路 13 第四節 小結 21 第三章 以類神經網路為基礎建立類股預測系統 22 第一節 問題描述 22 第二節 系統建構程序 24 第三節 輸入資料組合 26 第四節 資料分析模型 29 第五節 走勢預測模型 36 第六節 評估績效指標 39 第七節 小結 40 第四章 模型分析與驗證 41 第一節 資料與情境說明 41 第二節 模型參數設定 42 第三節 模型績效表現 46 第四節 模型驗證、分析與討論 54 第五節 小結 57 第五章 結論及建議 58 第一節 結論 58 第二節 管理意涵 59 第三節 未來研究建議與方向 60 參考文獻 61 附錄A 70 附錄B 72 附錄C 74

    Akyildirim, E., Bariviera, A. F., Nguyen, D. K., & Sensoy, A. (2022). Forecasting high-frequency stock returns: a comparison of alternative methods. Annals of Operations Research, 313(2), 639-690. https://link.springer.com/article/10.1007/s10479-021-04464-8
    Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271. https://arxiv.org/abs/1803.01271
    Banerjee, A. K., Dionisio, A., Pradhan, H. K., & Mahapatra, B. (2021). Hunting the quicksilver: Using textual news and causality analysis to predict market volatility. International Review of Financial Analysis, 77, 101848. https://www.sciencedirect.com/science/article/pii/S1057521921001800
    Barberis, N., & Thaler, R. (2003). A survey of behavioral finance. Handbook of the Economics of Finance, 1, 1053-1128. https://www.sciencedirect.com/science/article/pii/S1574010203010276
    Bodie, Z., Kane, A., & Marcus, A. (2013). Ebook: Essentials of Investments: Global edition. McGraw Hill. https://www.google.com/books?hl=zh-TW&lr=&id=1MovEAAAQBAJ&oi=fnd&pg=PP1&dq=investments+bodie&ots=gxZk29nQrg&sig=M4E3SnJ4ty378C6CHI4KfTsOhwU
    Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1-8. https://www.sciencedirect.com/science/article/pii/S187775031100007X
    Bouadjenek, M. R., Sanner, S., & Wu, G. (2023). A user-centric analysis of social media for stock market prediction. ACM Transactions on the Web, 17(2), 1-22. https://dl.acm.org/doi/abs/10.1145/3532856
    Buffett, W., & Cunningham, L. A. (2001). The Essays of Warren Buffett: Lessons for Corporate America. New York: L. Cunningham. https://heinonline.org/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/cdozo19&section=11
    Chiong, R., Fan, Z., Hu, Z., & Dhakal, S. (2022). A novel ensemble learning approach for stock market prediction based on sentiment analysis and the sliding window method. IEEE Transactions on Computational Social Systems. https://ieeexplore.ieee.org/abstract/document/9849432/
    Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078. https://arxiv.org/abs/1406.1078
    Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555. https://arxiv.org/abs/1412.3555
    Deng, S., Sinha, A. P., & Zhao, H. (2017). Adapting sentiment lexicons to domain-specific social media texts. Decision Support Systems, 94, 65-76. https://www.sciencedirect.com/science/article/pii/S016792361630183X
    Eom, C., Choi, S., Oh, G., & Jung, W. S. (2008). Hurst exponent and prediction based on weak-form efficient market hypothesis of stock markets. Physica A: Statistical Mechanics and its Applications, 387(18), 4630-4636. https://www.sciencedirect.com/science/article/pii/S0378437108003324
    Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The Journal of Finance, 25(2), 383-417. https://www.jstor.org/stable/2325486
    Gao, R., Cui, S., Xiao, H., Fan, W., Zhang, H., & Wang, Y. (2022). Integrating the sentiments of multiple news providers for stock market index movement prediction: A deep learning approach based on evidential reasoning rule. Information Sciences, 615, 529-556. https://www.sciencedirect.com/science/article/pii/S0020025522011495
    Guégan, D., & Renault, T. (2021). Does investor sentiment on social media provide robust information for Bitcoin returns predictability?. Finance Research Letters, 38, 101494. https://www.sciencedirect.com/science/article/pii/S1544612319314199
    Guo, H., Zhang, D., Liu, S., Wang, L., & Ding, Y. (2021). Bitcoin price forecasting: A perspective of underlying blockchain transactions. Decision Support Systems, 151, 113650. https://www.sciencedirect.com/science/article/pii/S0167923621001603
    Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527-1554. https://direct.mit.edu/neco/article-abstract/18/7/1527/7065
    Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. https://ieeexplore.ieee.org/abstract/document/6795963/
    Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. In Proceedings of the National Academy of Sciences, 79(8), 2554-2558. https://www.pnas.org/doi/abs/10.1073/pnas.79.8.2554
    Hoseinzade, E., & Haratizadeh, S. (2019). CNNpred: CNN-based stock market prediction using a diverse set of variables. Expert Systems with Applications, 129, 273-285. https://www.sciencedirect.com/science/article/pii/S0957417419301915
    Jin, Z., Yang, Y., & Liu, Y. (2020). Stock closing price prediction based on sentiment analysis and LSTM. Neural Computing and Applications, 32, 9713-9729. https://link.springer.com/article/10.1007/s00521-019-04504-2
    Kahneman, D., & Tversky, A. (2013). Prospect theory: An analysis of decision under risk. In Handbook of the Fundamentals of Financial Decision Making: Part I (pp. 99-127). https://www.worldscientific.com/doi/abs/10.1142/9789814417358_0006
    Kim, S., Ku, S., Chang, W., & Song, J. W. (2020). Predicting the direction of US stock prices using effective transfer entropy and machine learning techniques. IEEE Access, 8, 111660-111682. https://ieeexplore.ieee.org/abstract/document/9119388/
    Kraus, M., & Feuerriegel, S. (2017). Decision support from financial disclosures with deep neural networks and transfer learning. Decision Support Systems, 104, 38-48. https://www.sciencedirect.com/science/article/pii/S0167923617301793
    Krauss, C., Do, X. A., & Huck, N. (2017). Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500. European Journal of Operational Research, 259(2), 689-702. https://www.sciencedirect.com/science/article/pii/S0377221716308657
    Lam, M. (2004). Neural network techniques for financial performance prediction: integrating fundamental and technical analysis. Decision Support Systems, 37(4), 567-581. https://www.sciencedirect.com/science/article/pii/S0167923603000885
    LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. In Proceedings of the IEEE, 86(11), 2278-2324. https://ieeexplore.ieee.org/abstract/document/726791/
    Leigh, W., Purvis, R., & Ragusa, J. M. (2002). Forecasting the NYSE composite index with technical analysis, pattern recognizer, neural network, and genetic algorithm: a case study in romantic decision support. Decision Support Systems, 32(4), 361-377. https://www.sciencedirect.com/science/article/pii/S016792360100121X
    Leung, M. T., Daouk, H., & Chen, A. S. (2000). Forecasting stock indices: a comparison of classification and level estimation models. International Journal of Forecasting, 16(2), 173-190. https://www.sciencedirect.com/science/article/pii/S0169207099000485
    Leung, H., Lin, T. C., & Mao, R. (2022). Alternative Stars: Do Key Opinion Leaders on Social Media Move the Market?. Available at SSRN 4273951.
    Li, B., Chan, K. C., Ou, C., & Ruifeng, S. (2017). Discovering public sentiment in social media for predicting stock movement of publicly listed companies. Information Systems, 69, 81-92. https://www.sciencedirect.com/science/article/pii/S0306437916304860
    Li, T., van Dalen, J., & van Rees, P. J. (2018). More than just noise? Examining the information content of stock microblogs on financial markets. Journal of Information Technology, 33(1), 50-69. https://journals.sagepub.com/doi/abs/10.1057/s41265-016-0034-2
    Li, X., Wu, P., & Wang, W. (2020). Incorporating stock prices and news sentiments for stock market prediction: A case of Hong Kong. Information Processing & Management, 57(5), 102212. https://www.sciencedirect.com/science/article/pii/S0306457319307952
    Lin, W. C., Tsai, C. F., & Chen, H. (2022). Factors affecting text mining based stock prediction: Text feature representations, machine learning models, and news platforms. Applied Soft Computing, 130, 109673. https://www.sciencedirect.com/science/article/pii/S1568494622007220
    Lohrmann, C., & Luukka, P. (2019). Classification of intraday S&P500 returns with a Random Forest. International Journal of Forecasting, 35(1), 390-407. https://www.sciencedirect.com/science/article/pii/S0169207018301481
    Long, J., Chen, Z., He, W., Wu, T., & Ren, J. (2020). An integrated framework of deep learning and knowledge graph for prediction of stock price trend: An application in Chinese stock exchange market. Applied Soft Computing, 91, 106205. https://www.sciencedirect.com/science/article/pii/S1568494620301459
    Lopez-Lira, A., & Tang, Y. (2023). Can chatgpt forecast stock price movements? return predictability and large language models. arXiv preprint arXiv:2304.07619. https://arxiv.org/abs/2304.07619
    Mahmoudi, N., Docherty, P., & Moscato, P. (2018). Deep neural networks understand investors better. Decision Support Systems, 112, 23-34. https://www.sciencedirect.com/science/article/pii/S016792361830099X
    Malkiel, B. G. (2003). The efficient market hypothesis and its critics. Journal of Economic Perspectives, 17(1), 59-82. https://www.aeaweb.org/articles?id=10.1257/089533003321164958
    Marks, H. (2011). The Most Important Thing: Uncommon Sense for the Thoughtful Investor. Columbia University Press. https://www.degruyter.com/document/doi/10.7312/mark15368/html
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems, 26. https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
    Nassirtoussi, A. K., Aghabozorgi, S., Wah, T. Y., & Ngo, D. C. L. (2014). Text mining for market prediction: A systematic review. Expert Systems with Applications, 41(16), 7653-7670. https://www.sciencedirect.com/science/article/pii/S0957417414003455
    Niu, H., Xu, K., & Wang, W. (2020). A hybrid stock price index forecasting model based on variational mode decomposition and LSTM network. Applied Intelligence, 50, 4296-4309. https://link.springer.com/article/10.1007/s10489-020-01814-0
    Oord, A. V. D., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., ... & Kavukcuoglu, K. (2016). Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. https://arxiv.org/abs/1609.03499
    Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 1532-1543). https://aclanthology.org/D14-1162.pdf
    Renault, T. (2017). Intraday online investor sentiment and return patterns in the US stock market. Journal of Banking & Finance, 84, 25-40. https://www.sciencedirect.com/science/article/pii/S0378426617301589
    Ricciardi, V., & Simon, H. K. (2000). What is behavioral finance?. Business, Education & Technology Journal, 2(2), 1-9. https://papers.ssrn.com/Sol3/papers.cfm?abstract_id=256754
    Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386. https://psycnet.apa.org/journals/rev/65/6/386/
    Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536. https://www.nature.com/articles/323533a0
    Seong, N., & Nam, K. (2022). Forecasting price movements of global financial indexes using complex quantitative financial networks. Knowledge-Based Systems, 235, 107608. https://www.sciencedirect.com/science/article/pii/S0950705121008704
    Sharaf, M., Hemdan, E. E. D., El-Sayed, A., & El-Bahnasawy, N. A. (2021). StockPred: a framework for stock Price prediction. Multimedia Tools and Applications, 80, 17923-17954. https://link.springer.com/article/10.1007/s11042-021-10579-8
    Shiller, R. J. (2003). From efficient markets theory to behavioral finance. Journal of Economic Perspectives, 17(1), 83-104. https://www.aeaweb.org/articles?id=10.1257/089533003321164967
    Shefrin, H. (2002). Beyond greed and fear: Understanding Behavioral Finance and the Psychology of Investing. Oxford University Press. https://www.google.com/books?hl=zh-TW&lr=&id=hX18tBx3VPsC&oi=fnd&pg=PR9&dq=H+Shefrin&ots=0wy0erBq_x&sig=wU8NhQd6jnFOF7FzFXWS5PNhRyc
    Stajkowski, S., Kumar, D., Samui, P., Bonakdari, H., & Gharabaghi, B. (2020). Genetic-algorithm-optimized sequential model for water temperature prediction. Sustainability, 12(13), 5374. https://www.mdpi.com/2071-1050/12/13/5374
    Tao, M., Gao, S., Mao, D., & Huang, H. (2022). Knowledge graph and deep learning combined with a stock price prediction network focusing on related stocks and mutation points. Journal of King Saud University-Computer and Information Sciences, 34(7), 4322-4334. https://www.sciencedirect.com/science/article/pii/S131915782200163X
    Tsai, C. F., & Hsiao, Y. C. (2010). Combining multiple feature selection methods for stock prediction: Union, intersection, and multi-intersection approaches. Decision Support Systems, 50(1), 258-269. https://www.sciencedirect.com/science/article/pii/S0167923610001521
    Yang, J., Wang, Y., & Li, X. (2022). Prediction of stock price direction using the LASSO-LSTM model combines technical indicators and financial sentiment analysis. Peer Journal Computer Science, 8, e1148. https://peerj.com/articles/cs-1148/
    Zhao, Q., Xu, W., & Ji, Y. (2023). Predicting financial distress of Chinese listed companies using machine learning: To what extent does textual disclosure matter. International Review of Financial Analysis, 89, 102770. https://www.sciencedirect.com/science/article/pii/S1057521923002867
    Zhong, X., & Enke, D. (2017). A comprehensive cluster and classification mining procedure for daily stock market return forecasting. Neurocomputing, 267, 152-168. https://www.sciencedirect.com/science/article/pii/S0925231217310652

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE