| 研究生: |
黃怡華 Huang, Yi-Hwa |
|---|---|
| 論文名稱: |
應用類神經網路與關聯法則於銀行消費性貸款 |
| 指導教授: |
吳植森
Wu, Chih-Sen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理研究所 Institute of Information Management |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 消費性貸款 、類神經網路 、分類 、關聯法則 |
| 外文關鍵詞: | Neural networks, Classification, Association Rules, Consumer loans |
| 相關次數: | 點閱:108 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
銀行以授信業務為獲利的主要來源,因此授信品質的良窳將直接影響銀行的經營利潤。如何有效控管信用放款的質與量,成為目前各金融機構經營的首要目標。本研究應用類神經網路建立個人消費性貸款信用評等模式,期望能迅速客觀評估貸款申請人之信用風險狀況,以作為授信之依據,並將其與統計方法之鑑別分析進行信用分類準確度之比較。
本研究以某銀行消費性貸款授信戶為研究對象,進行兩階段資料探勘工作:第一階段應用類神經網路中的倒傳遞網路與統計鑑別分析方法分別建置個人消費性貸款信用評等之分類模式,以區分銀行客戶之信用類別,並同時採行交叉驗證方法進行模式訓練及驗證之工作,以確保模式之穩定性。第二階段利用關連法則找出不良授信戶之共同特徵與規則,使銀行能更詳盡的瞭解客戶特性,以便未來對不良授信戶進行防範與監控。
本研究實證分析結果顯示:倒傳遞網路模式在辨識信用不良顧客上有較佳之分類準確率,而在信用良好顧客之分類結果則與鑑別分析相近。運用關聯法則探勘信用不良顧客可提供銀行相關特徵及資訊以進行監控及防範之工作;而信用良好顧客之特徵及資訊則可作為行銷規劃及相關金融產品設計之依據。
none
一、中文部分:
中央銀行( 2002 ),中央銀行年報,頁69–75。
財政部( 1985 ),台財融第一九四八八號函,「加強
銀行辦理消費性貸款要點」。
洪允平( 1988 ),「消費性貸款」,中小企銀季刊,
第三十卷,頁46–47。
陳順宇( 1998 ),多變量分析,華泰書局,台北。
葉怡成( 2001 ),類神經網路模式應用與實作,儒林
圖書公司,台北。
薛琦( 2001 ),消費者貸款實務,金融研究訓練中
心,台北。
二、英文部分:
Agrawal, R. and Srikant R.( 1994 ), “Fast
algorithm for mining association rules in
large databases, ” Proceedings of The 20th
International Conference on Very Large
DataBases , pp.487–499.
Apilado, V. P., Warner D. C. and Dauten J. J.(
1974 ), “Evaluative techniques in
consumer finance,” Journal of Financial and
Quantitative Analysis, 1, pp.275–283.
Berry, A. J.( 1997 ), Data Mining Techniques:
for Marketing ,Sales, and Customer Support,
John Wiley and Sons, Canada.
Berson, A., Smith S., and Thearling K.( 2000
), Building Data Mining Applications for
CRM, McGraw–Hill, New York.
Carter, C. and Catlett J.( 1987 ), “Assessing
credit card applications using machine
learning ,” IEEE Expert, pp.71–79.
Chen, M.S. , Han J. and Yu P. S.( 1996 ),
“Data mining : an overview from a database
perspective,” IEEE Transactions on
Knowledge and Data Engineering, 8( 6 ),
pp.866–883.
Chorafas, D. N.( 1987 ), “Expert system at the
banker’s research,” International
Journal of Bank Marketing, 5 , pp.72–81.
Coats, P. and Fant F.( 1993 ), “Recognizing
financial distress patterns using a neural
network tool,” Financial Management, 22( 2
), pp.142–165.
Davies, P. C. ( 1994 ), “Design issues in
neural network development,” Nero
Vest Journal, 5(1), pp.21-25.
Desai, V., Crook J. and Overstreet G.( 1996 ),
“A comparison of neural networks and linear
scoring models in the credit union
environment,” European Journal of
Operations Research, 95( 1 ), pp.24–37.
Eisenbeis, D. B.( 1978 ), “Problems in
applying of discriminant anaysis in credit
scoring models,” Journal of Banking and
Finance, 2, pp. 205–219.
Fayyad, U.M.( 1996 ), “Data mining and
knowledge discovery : making sense out of
data,” IEEE Expert, 11( 10 ), pp.20–25.
Fitzpatrick, D. B.( 1976 ), “An analysis of
bank credit card profit,” Journal of
Bank Research, 7, pp. 199–205.
Fogarty, T. C. and Ireson N. S.( 1993 ),
“Evolving bayesian classifiers for credit
control : a comparison with other machine
learning methods,” Journal of Mathematics
Applied in Business and Industry, 5,
pp.63–76.
Freeman, J. A. and Skapura D. M.( 1992),
Neural Networks Algorithms, Applications, and
Programming Techniques, Addison-Wesley , New
York.
Han, J., and Kamber M.( 1999 ), Data Mining:
Concepts and Techniques, Morgan Kanfmann, San
Francisco .
Henley,W. E. and Hand D. J.( 1996 ), “A k-NN
classifier for assessing consumer credit
risk, ” The Statistician , 65, pp.77–95.
Johnson, R.A. and Wichern D. W.( 1998 ),
Applied Multivariate Stati stical Analysis,
Prentic Hall, London.
Leonard, K. J.( 1993 ), “Detecting credit card
fraud using expert systems,” Computers and
Industrial Engineering , 25, pp.103–106.
Malhotra, M. and Malhotra D.K.( 2002 ),
“Differentiating between good credits and bad
credits using neuro–fuzzy systems,”
European Journal of Operational Research,
136, pp.190–211.
Piramuthu, S.( 1999 ), “Financial credit–risk
evaluation with neural and neuro–fuzzy
systems,” European Journal of Operational
Research, 112, pp.310–312.
Salchenberger, L.M., Cinar E.M. and Lash N.A.(
1992), “Neural networks : a new
tool for predicting thrift failures,”
Decision Sciences, 23, pp.899–916.
Srinivasan, V. and Kim Y. H.( 1987 ), “Credit
granting: a comparative analysis of
classification procedures,” Journal of
Finance, 42, pp.665–683.
Tam, K.Y. and Kiang M.Y.( 1992 ), “Managerial
applications of neural networks: The case of
bank failure prediction”, Management
Science, 8, pp.465–471.
Vellido, A., Lisboba P.J.G. and Vaughan J.(
1999 ), “Neural network in business : a
suvey of applications,” Expert Systems with
Application, 17(1), pp.51–70
West, D.( 2000 ), “Neural network credit
scoring models,” Computers and Operations
Research, 27, pp.1131–1152.
Zhang, G. , Hu M.Y., Patuwo B.E and Indro D.C.(
1999 ), “Artificial neural networks in
bankruptcy prediction: General framework and
cross-validation analysis,” European
Journal of Operational Research, 116,
pp.16–32.
Zocco, D.P.( 1985 ), “A framework for expert
systems in bank loan management,”
Journal of Commercial Bank Lending, 67,
pp.47–54.