| 研究生: |
盧宜均 Lu, I-Chun |
|---|---|
| 論文名稱: |
半導體工業中濕式洗滌塔產生的含揮發性有機化合物 (VOCs)廢水之生物處理 Biological treatment of volatile organic compounds (VOCs)-containing wastewaters produced from wet scrubbers in semiconductor industry |
| 指導教授: |
黃良銘
Huang, Liang-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 連續攪拌反應槽 、初始食微比 、COD降解 、NGS定序 |
| 外文關鍵詞: | continuous stirred tank reactor (CSTR), S0/X0 ratio, COD degradation, next-generation sequencing (NGS) |
| 相關次數: | 點閱:128 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對半導體工業中濕式洗滌塔所產生的含揮發性有機物(VOC)廢水進行生物降解可行性進行評估,針對來自不同廠的兩股含高濃度COD洗滌塔廢水分別進行好氧、缺氧及厭氧之生物降解實驗,建立連續攪拌反應槽(CSTR) 進行長期測試,並藉由分子生物技術,解析反應槽內各時期之優勢微生物族群變化,以找出廢水最適合且最有效益的處理方式。
影響VOC揮發性的因素為沸點、蒸氣壓、親水性和溫度。而且來自不同濕式洗滌塔的廢水中可能含有多種VOC,因此進行批次實驗以確定可行的處理方式。根據批次實驗的結果,廢水A的VOC會在好氧條件經由曝氣而被汽提,但在缺氧條件下可被微生物分解,在缺氧並添加BioNET的生物反應槽中,經380天連續操作下可降解80%的COD。廢水B則是可以在好氧條件下有最佳降解效率,並在好氧添加BioNET生物反應槽中,經272天連續操作可處理100 mg-COD/L-h。根據初始食微比(S0/X0)範圍為0.13到9.13 g COD/g MLVSS的批次實驗中,並利用Monod-type方程式可得知在缺氧反應槽中,懸浮微生物與BioNET上的微生物最大COD比降解速率為188.5與180.7 mg/h-gVSS,其半飽和常數Ks為2.1和2.8。至於在好氧反應槽初始食微比0.5到8.4 g COD/g MLVSS的批次中,懸浮微生物之最大COD比降解速率為346.1 mg/h-gVSS,其Ks值為5.0,而BioNET上的微生物則是在Ks值為9.2時才能達到最大COD比降解速率324.1 mg/h-gVSS。另外,在分子生物技術次世代定序(NGS)結果發現,Denitratisoma和Paracoccus為缺氧槽之主要脫硝菌,而Hyphomicrobium, Burkholderiaceae,Rhodococcus ruber為反應槽中主要降解VOC之微生物族群。且從菌相分析來看,反應槽中不同時期BioNET和懸浮污泥微生物種類皆為相似,但優勢菌種會隨著反應槽的操作條件改變而有變化。
In the study, the biological degradability for treating volatile organic compounds (VOCs)- containing wastewater from wet scrubber in semiconductor industry. In the case, two wastewaters containing high concentration of COD were routinely and periodically discharged from wet scrubber and need to be treated by biological processes. Therefore, in order to investigate the feasibility and efficiency of biological treatment for VOCs-containing wastewaters, two bioreactors, under anoxic and aerobic condition, respectively, were operated in this study while batch experiments were also conducted.
Factors affecting VOC volatility includes boiling point, vapor pressure, hydrophilic and temperature. According to the results from batch experiments, COD in Wastewater A was stripped by aeration, but it can be decomposed by microorganisms under anoxic conditions. COD removal was 80% using anoxic continuous stirred tank reactor (CSTR) with BioNET addition after 380-days operation. On the other hand, COD in Wastewater B could be decomposed by microorganisms under aerobic condition. By operating aerobic CSTR with BioNET addition, COD removal rate achieved 100 mg-COD/L-h after 272 days of operation. According the batch tests under different S0/X0 ratios between 0.39 and 9.13 g COD/g MLVSS, the fitting curve of Monod-type equation presented maximum specific COD degradation rates of 188.5 and 180.7 mg/h-gVSS for suspended sludge and those in/onto BioNET from anoxic reactor, respectively. As for batches from aerobic reactor under S0/X0 between 0.5 and 8.4 g COD/g MLVSS, the suspended microorganisms will reach the maximum specific COD degradation rates of 346.1 mg/h-gVSS while that on BioNET was 324.1 mg/h-gVSS. Furthermore, the results from the next generation sequencing (NGS) indicated that Denitratisoma and Paracoccus are the main denitrifying bacteria in the anoxic reactor, while Hyphomicrobium, Burkholderiaceae and Rhodococcus ruber are probably the mainly VOC-degrading microorganisms in the aerobic reactor. And bacteria communities from suspended sludge and BioNET were similar in the same period, but the dominant microorganisms changed more obviously with different operations of the reactor.
Agency, U.E.-W. (DC): E.P., 2009, undefined, Steam electric power generating point source category: final detailed study report n.d.
Ahmadvand, H., Germann, G., Gandee, J.P., Buehler, V.T., Utilizing the fluidized bed to initiate water treatment on site, in: Biological Unit Processes for Hazardous Waste Treatment 1995.
Akhlas, J., Bertucco, A., Ruggeri, F., Collodi, G., Treatment of wastewater from syngas wet scrubbing: Model-based comparison of phenol biodegradation basin configurations. Can. J. Chem. Eng. 95, 1652–1660, 2017.
Alonso, C., Suidan, M.T., Kim, B.R., Kim, B.J., Dynamic mathematical model for the diodegradation of VOCs in a biofilter: Biomass accumulation study. Environ. Sci. Technol. 32, 3118–3123, 1998.
Arif, A.A., Shah, S.M., Association between personal exposure to volatile organic compounds and asthma among US adult population. Int. Arch. Occup. Environ. Health 80, 711–719, 2007.
Baker, S.C., Ferguson, S.J., Ludwig, B., Page, M.D., Richter, O.-M.H., vanSpanning, R.J.M., Molecular Genetics of the GenusParacoccus: Metabolically Versatile Bacteria with Bioenergetic Flexibility. Microbiol. Mol. Biol. Rev. 62, 1046–1078, 1998.
Balasubramanian, P., Philip, L., Bhallamudi, S.M., Biodegradation of chlorinated and non-chlorinated VOCs from pharmaceutical industries. Appl. Biochem. Biotechnol. 163, 497–518, 2011.
Bicca, F.C., Fleck, L.C., Ayub, M.A.Z., Production of biosurfactant by hydrocarbon degrading Rhodococcus ruber and Rhodococcus erythropolis. Rev. Microbiol. 30, 231–236, 1999.
Boeglin, M.L., Wessels, D., Henshel, D., An investigation of the relationship between air emissions of volatile organic compounds and the incidence of cancer in Indiana counties. Environ. Res. 100, 242–54, 2006.
Burgess, J.E., Parsons, S.A., Stuetz, R.M., Developments in odour control and waste gas treatment biotechnology: a review. Biotechnol. Adv. 19, 35–63, 2001.
Chaitankar, V., Karakülah, G., Ratnapriya, R., Giuste, F.O., Brooks, M.J., Swaroop, A., Next generation sequencing technology and genomewide data analysis: Perspectives for retinal research. Prog. Retin. Eye Res. 55, 1–31, 2016.
Chang, T.Y., Lin, S.J., Shie, R.H., Tsai, S.W., Hsu, H.T., Tsai, C.T., Kuo, H.W., Chiang, C.F., Lai, J.S., Characterization of volatile organic compounds in the vicinity of an optoelectronics industrial park in Taiwan. J. Air Waste Manag. Assoc. 60, 55–62, 2010.
Chein, H.M., Chen, T.M., Emission characteristics of volatile organic compounds from semiconductor manufacturing. J. Air Waste Manag. Assoc. 53, 1029–1036, 2003.
Chen, W.H., Lin, S.J., Lee, F.C., Chen, M.H., Yeh, T.Y., Kao, C.M., Comparing volatile organic compound emissions during equalization in wastewater treatment between the flux-chamber and mass-transfer methods. Process Saf. Environ. Prot. 109, 410–419, 2017a.
Chen, W.H., Lin, S.J., Lee, F.C., Chen, M.H., Yeh, T.Y., Kao, C.M., Comparing volatile organic compound emissions during equalization in wastewater treatment between the flux-chamber and mass-transfer methods. Process Saf. Environ. Prot. 109, 410–419, 2017b.
Cheng, B., A Study of Hyphomicrobium-----Measurement of Denitrification and Examination of Manganese Oxidation n.d.
Cheng, W.H., Hsu, S.K., Chou, M.S., Volatile organic compound emissions from wastewater treatment plants in Taiwan: Legal regulations and costs of control. J. Environ. Manage. 88, 1485–1494, 2008.
Chiu, K.H., Wu, B.Z., Chang, C.C., Sree, U., Lo, J.G., Distribution of volatile organic compounds over a semiconductor industrial park in Taiwan. Environ. Sci. Technol. 39, 973–983, 2005.
Darlington, A.B., Dat, J.F., Dixon, M.A., The biofiltration of indoor air: Air flux and temperature influences the removal of toluene, ethylbenzene, and xylene. Environ. Sci. Technol. 35, 240–246, 2001.
Domeño, C., Rodríguez-Lafuente, A., Martos, J., Bilbao, R., Nerín, C., VOC Removal and Deodorization of Effluent Gases from an Industrial Plant by Photo-Oxidation, Chemical Oxidation, and Ozonization. Environ. Sci. Technol. 44, 2585–2591, 2010.
Estrada, J.M., Kraakman, N.J.R.B., Muñoz, R., Lebrero, R., A comparative analysis of odour treatment technologies in wastewater treatment plants. Environ. Sci. Technol. 45, 1100–1106, 2011.
Estrada, J.M., Rodr’iguez, E., Quijano, G., Muñoz, R., Influence of gaseous VOC concentration on the diversity and biodegradation performance of microbial communities. Bioprocess Biosyst. Eng. 35, 1477–1488, 2012.
Freitas dos Santos, L.M., Livingston, A.G., Novel membrane bioreactor for detoxification of VOC wastewaters: Biodegradation of 1,2-dichloroethane. Water Res. 29, 179–194, 1995.
Gilan, I., Hadar, Y., Sivan, A., Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl. Microbiol. Biotechnol. 65, 97–104, 2004.
Hazrati, H., Shayegan, J., Volatile organic compound removal mechanisms in membrane bioreactor. Adv. Environ. Biol. 8, 373–380, 2014.
Hazrati, H., Shayegan, J., Mojtaba Seyedi, S., The effect of HRT and carriers on the sludge specifications in MBR to remove VOCs from petrochemical wastewater. Desalin. Water Treat. 57, 21730–21742, 2016.
Ho, K.L., Chung, Y.C., Lin, Y.H., Tseng, C.P., Biofiltration of trimethylamine, dimethylamine, and methylamine by immobilized Paracoccus sp. CP2 and Arthrobacter sp. CP1. Chemosphere 72, 250–256, 2008.
Hsieh, C.C., Removal mechanisms of VOCs in an activated sludge process. J. Hazard. Mater. 79, 173–187, 2000.
Huang, Y.H., Peddi, P.K., Tang, C., Zeng, H., Teng, X., Hybrid zero-valent iron process for removing heavy metals and nitrate from flue-gas-desulfurization wastewater. Sep. Purif. Technol. 118, 690–698, 2013.
Jo, E., Park, S.-M., Yeo, I., Cha, J., Lee, J.Y., Kim, Y.-H., Lee, T.-K., Park, C., A study on the removal of sulfate and nitrate from the wet scrubber wastewater using electrocoagulation. Desalin. Water Treat. 57, 7833–7840, 2016.
Lebrero, R., Rodríguez, E., Estrada, J.M., García-Encina, P.A., Muñoz, R., Odor abatement in biotrickling filters: Effect of the EBRT on methyl mercaptan and hydrophobic VOCs removal. Bioresour. Technol. 109, 38–45, 2012.
Liu, Y., Overview of some theoretical approaches for derivation of the Monod equation. Appl. Microbiol. Biotechnol. 73, 1241–1250, 2007.
Loy, A., Lehner, A., Lee, N., Adamczyk, J., Meier, H., Ernst, J., Schleifer, K.H., Wagner, M., Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl. Environ. Microbiol. 68, 5064–5081, 2002.
Lünsmann, V., Kappelmeyer, U., Benndorf, R., Martinez-Lavanchy, P.M., Taubert, A., Adrian, L., Duarte, M., Pieper, D.H., vonBergen, M., Müller, J.A., Heipieper, H.J., Jehmlich, N., In situprotein-SIP highlights Burkholderiaceae as key players degrading toluene by para ring hydroxylation in a constructed wetland model. Environ. Microbiol. 18, 1176–1186, 2016.
Muñoz, R., Malhautier, L., Fanlo, J.-L., Quijano, G., Biological technologies for the treatment of atmospheric pollutants. Int. J. Environ. Anal. Chem. 95, 950–967, 2015a.
Muñoz, R., Malhautier, L., Fanlo, J.L., Quijano, G., Biological technologies for the treatment of atmospheric pollutants. Int. J. Environ. Anal. Chem. 95, 950–967, 2015b.
Muñoz, R., Souza, T.S.O., Glittmann, L., Pérez, R., Quijano, G., Biological anoxic treatment of O2-free VOC emissions from the petrochemical industry: A proof of concept study. J. Hazard. Mater. 260, 442–450, 2013.
Muyzer, G., Smalla, K., Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology, in: Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology. pp. 127–141, 1998.
Namkung, E., Rittmann, B.E., Estimating Volatile Organic Compound Emissions From Publicly Owned Treatment Works. J. Water Pollut. Control Fed. 59, 670–678, 1987.
Padalkar, A.V., Kumar, R., Removal mechanisms of volatile organic compounds (VOCs) from effluent of common effluent treatment plant (CETP). Chemosphere 199, 569–584, 2018.
Phelps, C.D., Young, L.Y., Anaerobic biodegradation of BTEX and gasoline in various aquatic sediments, Biodegradation 1999.
Priya, V.S., Philip, L., Treatment of volatile organic compounds in pharmaceutical wastewater using submerged aerated biological filter. Chem. Eng. J. 266, 309–319, 2015a.
Priya, V.S., Philip, L., Treatment of volatile organic compounds in pharmaceutical wastewater using submerged aerated biological filter. Chem. Eng. J. 266, 309–319, 2015b.
Priya, V.S., Philip, L., Biodegradation of dichloromethane along with other VOCs from pharmaceutical wastewater. Appl. Biochem. Biotechnol. 169, 1197–1218, 2013.
Rapley, R., Basic Techniques in Molecular Biology. Med. Biomethods Handb. 1–12, 2005.
Renshaw, M.A., Olds, B.P., Jerde, C.L., Mcveigh, M.M., Lodge, D.M., The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol-chloroform-isoamyl alcohol DNA extraction. Mol. Ecol. Resour. 15, 168–176, 2015.
RHIZOSPHERE, 399–406, 2005.
Su, T.-T., Lin, C.-W., Yet-Po, I., Wu, C.-H., Biodegradation of semiconductor volatile organic compounds by four novel bacterial strains: a kinetic analysis. Bioprocess Biosyst. Eng. 35, 1117–1124, 2012.
Tauseef, S.M., Abbasi, T., Abbasi, S.A., Energy recovery from wastewaters with high-rate anaerobic digesters. Renew. Sustain. Energy Rev. 2013.
USEPA, Technical Overview of Volatile Organic Compounds [WWW Document] 2009.
Wang, D., Li, T., Huang, K., He, X., Zhang, X.X., Roles and correlations of functional bacteria and genes in the start-up of simultaneous anammox and denitrification system for enhanced nitrogen removal. Sci. Total Environ. 655, 1355–1363, 2019.
World Health Organization, Indoor air quality: Organic pollutants. Environ. Technol. Lett. 10, 855–858, 1989.
Yang, C., Qian, H., Li, X., Cheng, Y., He, H., Zeng, G., Xi, J., Simultaneous Removal of Multicomponent VOCs in Biofilters. Trends Biotechnol. 36, 673–685, 2018.
Yang, J., Wang, K., Zhao, Q., Huang, L., Yuan, C.S., Chen, W.H., Yang, W.Bin, Underestimated public health risks caused by overestimated VOC removal in wastewater treatment processes. Environ. Sci. Process. Impacts 16, 271–279, 2014.
Yang, Z., Li, J., Liu, J., Cao, J., Sheng, D., Cai, T., Evaluation of a pilot-scale bio-trickling filter as a VOCs control technology for the chemical fibre wastewater treatment plant. J. Environ. Manage. 246, 71–76, 2019.
Yoshikawa, M., Zhang, M., Toyota, K., Biodegradation of volatile organic compounds and their effects on biodegradability under co-existing conditions. Microbes Environ. 32, 188–200, 2017.
Zhou, X.G., Ren, L.F., Li, Y.T., Zhang, M., Yu, Y.De, Yu, J., The next-generation sequencing technology: A technology review and future perspective. Sci. China Life Sci. 53, 44–57, 2010.
周明顯 “光電半導體VOCs 處理成本分析及效益評估”。國立中山大學環境工程研究所,2003。
宋宗信 “以GC/MS偵測高科技工業區內空氣中揮發性有機物濃度之研究”,碩士論文,國立交通大學工學院碩士在職專班永續環境科技組,2010。
蘇茂豐 “國內半導體製造業及光電業之產業現況、製程廢氣污染來源與排放特性”,環保技術 e 報,第 3 期,2003。