簡易檢索 / 詳目顯示

研究生: 蔡承祐
Tsai, Chen-Yu
論文名稱: 利用壓電電子學提昇A軸氮化鎵奈米線之紫外光感測效率
UV Responsivity Enhancement of A-axial GaN Nanowire via Piezophototronic Effect
指導教授: 劉全璞
Liu, Chuan‐Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 100
中文關鍵詞: 氮化鎵奈米線紫外光感測壓電電子學效應
外文關鍵詞: GaN, nanowire, UV detector, piezophototronics
相關次數: 點閱:59下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用熱化學氣相沈積法成長之a軸氮化鎵奈米線,製作單根奈米線金屬-半導體-金屬(MSM)型之紫外光感測器,並首次運用壓電電子學效應(Piezophototronic effect)於此結構上提昇其紫外光感測效率。我們發現當我們施予一0.012%之張應力於奈米線時,感測器在325nm的紫外光光響應值大幅提昇了180%,由5×104(A/W)增進至1.3×105(A/W),此結果為目前已知利用氮化鎵奈米線感測紫外光最高的效率。除此之外,我們發現感測器之紫外光光響應與輸出電流會在一最佳化張應力下提昇至最大值,持續加大張應力則會使其下降。我們將此非線性之提昇現象,歸因於a軸氮化鎵奈米線特殊壓電電場分佈下產生之蕭機特能障效應(SBH effect)與載子束縛效應(Carrier trapping effect)相互競爭之結果。再更進一步測試擁有不同摻雜濃度a軸氮化鎵奈米線製程之元件後,我們發現隨著奈米線的摻雜濃度越高,提昇至最大光響應值所需之外加張應力越大。我們將此現象歸因於載子屏蔽效應(Carrier screening effect)屏蔽壓電電勢所致,且在蕭機特能障效應與載子束縛效應上屏蔽程度在不同載子濃度區間各有所異。
    此研究首次展示了壓電電子學效應應用於提昇a軸氮化鎵奈米線之紫外光感測效率,並獲得了目前已知最高的325nm紫外光光響應值。此研究結果建議未來利用a軸氮化鎵奈米線建構之感測器,在最佳化的外加應力下能有效提昇感測器之感測效率。

    For the first time, an ultrahigh UV responsivity of 105 (A/W) is demonstrated on a non-polar a-axial GaN nanowire metal-semiconductor-metal (MSM) UV photodetector incorporating piezophototronic effect.
    It was observed that the UV responsivity of an a-axial GaN nanowire based MSM photodetector enhanced by a significant 180% from 5×104 to 1.3×105 (A/W) when a 0.012% tensile strain was applied on the nanowire. Moreover, the measured UV responsivity and output current enhances to a maximum at an optimum applied strain and then falls off. The non-linearity enhancement in UV responsivity with applied strain is attributed to the competition between Schottky barrier height (SBH) effect and carrier trapping effect, acting on carrier transport mechanisms induced by the unique piezopotential distribution in a strained a-axial GaN nanowire. By further comparing devices having different estimated carrier concentrations, we discovered that the maximum UV responsivity and output current shifted to higher tensile strain states as increasing carrier concentration. The phenomenon is attributed to the difference in carrier screening effect on the strain induced SBH lowering effect and carrier trapping effect in terms of magnitude.
    The results from this research suggest an optimum amount of strain should be applied on future a-axial GaN nanowire based MSM type sensors for best performance enhancement.

    Table of Contents 中文摘要 I Abstract II 誌謝 III Table of Contents IV List of Tables VII List of Figures VIII Chapter 1. Motivations and Introduction to GaN and Piezotronics 1 1.1. Introduction to GaN and its Applications 1 1.2. From Piezoelectric to Piezotronics and Piezophototronics 4 1.3. Motivations 7 Chapter 2. Literature Review on GaN based UV detectors, Piezotronic and Piezophototronic Devices 8 2.1.Properties of GaN 8 2.1.1Structural Properties of GaN 8 2.1.2 Physical Properties of GaN 9 2.2. GaN Based UV Detectors 12 2.2.1 GaN Film Based UV Photodetectors 14 2.2.2 GaN Nanowire Based UV Photodetectors 16 2.3. Fundamentals of Piezotronics and Piezophototronics 23 2.3.1 Origin of Piezoelectric Potential 23 2.2.2 Gating Effect Induced by Piezopotential 25 2.3.3 Effects of Piezopotential on Metal-Semiconductor Contacts 29 2.3.4 Piezotronic Effect Enhanced Sensors 32 2.3.5 Piezotronic Effect Enhanced UV Sensors 35 Chapter 3. Experimental Setup 40 3.1 Experimental Flow Chart 40 3.2 Growth of A-axial GaN Nanowires 41 3.2.1 Chemical Vapor Deposition (CVD) 41 3.3 Morphology and Crystal Structure Characterization 43 3.3.1 Scanning Electron Microscopy (SEM) 43 3.3.2 High Resolution Transmission Electron Microscopy (HRTEM) 47 3.4 Piezotronics and Piezophototronics Analysis 49 3.4.1 Device fabrication 49 3.4.2 Piezotronics and Piezophototronics measurement 50 3.5 Simulation of Piezopotential Distribution 53 3.5.1 COMSOL Multiphysics 53 3.6 M-S-M IV Curve Fitting 55 Chapter 4. Results and Discussion 57 4.1 Morphology and Structural Characterization 57 4.1.1 SEM analysis 57 4.1.2 TEM analysis 59 4.2 Simulation of Piezopotential Distribution 60 4.2.1 Piezopotential in a triangular cross-sectioned a-axial GaN nanowire 60 4.3 Electrical Characteristics 63 4.3.1 I-V characteristics under dark condition 63 4.3.2 Carrier concentration estimation via curve fitting 64 4.3.3 I-V characteristics under illumination conditions 65 4.3.4 Photo current and responsivity under different illumination intensity 67 4.4 Piezotronic and Piezophototronic Properties 72 4.4.1 Piezotronics 72 4.4.2 Piezopotential screening effect 73 4.4.3 Piezophototronics 74 4.4.4 Output current change due to piezophototronic effect 76 4.4.5 UV responsivity enhancement via piezophototronic effect 78 4.5 Decoupling of SBH and Trapping effect 80 4.5.1 Output current change due to SBH and trapping effect 80 4.5.2 The SBH effect 81 4.5.3 The trapping effect 82 4.5.4 Decoupling the SBH and trapping effect 85 4.5.2 The screening effect on SBH and trapping effect 91 Chapter 5. Conclusions and Future aspects 96 Chapter 6. References 98

    [1] T. Mukai, D. Morita, S. Nakamura, Journal of Crystal Growth 1998, 189, 778.
    [2] E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, C. Weisbuch, Applied Physics Letters 2011, 98.
    [3] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, J. Hilsenbeck, Journal of Applied Physics 1999, 85, 3222.
    [4] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, Japanese Journal of Applied Physics Part 2-Letters 1996, 35, L74.
    [5] C.-H. Wang, W.-S. Liao, Z.-H. Lin, N.-J. Ku, Y.-C. Li, Y.-C. Chen, Z.-L. Wang, C.-P. Liu, Advanced Energy Materials 2014, 4.
    [6] C. A. Berven, V. Dobrokhotov, D. N. McIlroy, S. Chava, R. Abdelrahaman, A. Heieren, J. Dick, W. Barredo, Ieee Sensors Journal 2008, 8, 930.
    [7] Y. Wei, T. Nohova, S. Krishnankutty, R. Torreano, S. McPherson, H. Marsh, Applied Physics Letters 1998, 73, 1086.
    [8] L. Li, H. Lu, Z. Yang, L. Tong, Y. Bando, D. Golberg, Advanced Materials 2013, 25, 1109.
    [9] D. Kaimo, L. Liang, Advanced Materials 2014, 26, 2619.
    [10] E. Monroy, F. Omnes, F. Calle, Semiconductor Science and Technology 2003, 18, R33.
    [11] M. Razeghi, Proceedings of the Ieee 2002, 90, 1006.
    [12] Z. L. Wang, Nanogenerators for Self-powered Devices and Systems, Georgia Institute of Technology 2011.
    [13] S.-K. H. Takafumi Yao, Oxide and Nitride Semiconductors Processing, Properties, and Applications, 2008.
    [14] S. Bloom, G. Harbeke, E. Meier, Ortenbur.Ib, Physica Status Solidi B-Basic Research 1974, 66, 161.
    [15] S. Strite, H. Morkoc, Journal of Vacuum Science & Technology B 1992, 10, 1237.
    [16] S. W. Kaun, M. H. Wong, U. K. Mishra, J. S. Speck, Semiconductor Science and Technology 2013, 28.
    [17] K. You, H. Jiang, D. Li, X. Sun, H. Song, Y. Chen, Z. Li, G. Miao, H. Liu, Applied Physics Letters 2012, 100.
    [18] H.-F. Lian, G.-S. Wang, H. Lu, F.-F. Ren, D.-J. Chen, R. Zhang, Y.-D. Zheng, Chinese Physics Letters 2013, 30.
    [19] Z.-D. Huang, W.-Y. Weng, S.-J. Chang, Y.-F. Hua, C.-J. Chiu, T.-J. Hsueh, S.-L. Wu, Ieee Sensors Journal 2013, 13, 1187.
    [20] B. W. Lim, Q. C. Chen, J. Y. Yang, M. A. Khan, Applied Physics Letters 1996, 68, 3761.
    [21] P. C. Chang, Y. K. Su, K. J. Lee, C. L. Yu, S. J. Chang, C. H. Liu, Journal of Alloys and Compounds 2010, 504, S429.
    [22] M. Misra, T. D. Moustakas, R. P. Vaudo, R. Singh, K. S. Shah, Proceedings of the SPIE - The International Society for Optical Engineering 1995, 2519, 78.
    [23] M. A. Khan, M. S. Shur, Q. Chen, J. N. Kuznia, C. J. Sun, Electronics Letters 1995, 31, 398.
    [24] E. Munoz, E. Monroy, J. A. Garrido, I. Izpura, F. J. Sanchez, M. A. SanchezGarcia, E. Calleja, B. Beaumont, P. Gibart, Applied Physics Letters 1997, 71, 870.
    [25] S.-E. Ahn, H. J. Ji, K. Kim, G. T. Kim, C. H. Bae, S. M. Park, Y.-K. Kim, J. S. Ha, Applied Physics Letters 2007, 90.
    [26] R. Yu, L. Dong, C. Pan, S. Niu, H. Liu, W. Liu, S. Chua, D. Chi, Z. L. Wang, Advanced Materials 2012, 24, 3532.
    [27] X. Feng, L. Hai, X. Xiangqian, C. Dunjun, H. Ping, Z. Rong, Z. Youdou, Solid-State Electronics 2011, 57, 39.
    [28] Z. Man, B. Jinhe, F. Xiuying, G. Feng, G. Yongsheng, Z. Yong, Z. Mei, S. Yufang, G. Fei, L. Jian, Physica B 2009, 404, 275.
    [29] C.-W. Hsu, Y.-F. Chen, Y.-K. Su, Ieee Journal of Quantum Electronics 2014, 50, 35.
    [30] K. M. A. Saron, M. R. Hashim, M. A. Farrukh, Superlattices and Microstructures 2013, 64, 88.
    [31] A. Mueller, G. Konstantinidis, M. Androulidaki, A. Dinescu, A. Stefanescu, A. Cismaru, D. Neculoiu, E. Pavelescu, A. Stavrinidis, Thin Solid Films 2012, 520, 2158.
    [32] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, D. Wang, Nano Letters 2007, 7, 137.
    [33] R.-S. Chen, T.-H. Yang, H.-Y. Chen, L.-C. Chen, K.-H. Chen, Y.-J. Yang, C.-H. Su, C.-R. Lin, Applied Physics Letters 2009, 95.
    [34] R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. V. Hart, T. Stoica, H. Luth, Nano Letters 2005, 5, 981.
    [35] L. Dandan, W. Hui, Z. Wei, L. Heping, P. Wei, Applied Physics Letters 2009, 94, 172103 (3 pp.).
    [36] Y. Hu, J. Zhou, P.-H. Yeh, Z. Li, T.-Y. Wei, Z. L. Wang, Advanced Materials 2010, 22, 3327.
    [37] W. Y. Weng, T. J. Hsueh, S. J. Chang, S. B. Wang, H. T. Hsueh, G. J. Huang, Ieee Journal of Selected Topics in Quantum Electronics 2011, 17, 996.
    [38] L. Rigutti, M. Tchernycheva, A. D. L. Bugallo, G. Jacopin, F. H. Julien, L. F. Zagonel, K. March, O. Stephan, M. Kociak, R. Songmuang, Nano Letters 2010, 10, 2939.
    [39] R.-S. Chen, H.-Y. Chen, C.-Y. Lu, K.-H. Chen, C.-P. Chen, L.-C. Chen, Y.-J. Yang, Applied Physics Letters 2007, 91.
    [40] X. Wang, Y. Zhang, X. Chen, M. He, C. Liu, Y. Yin, X. Zou, S. Li, Nanoscale 2014, 6, 12009.
    [41] R. S. Chen, C. Y. Lu, K. H. Chen, L. C. Chen, Applied Physics Letters 2009, 95.
    [42] M. Surniya, K. Yoshimura, T. Ito, K. Ohtsuka, S. Fuke, K. Mizuno, M. Yoshimoto, H. Koinuma, A. Ohtomo, M. Kawasaki, Journal of Applied Physics 2000, 88, 1158.
    [43] Z. L. Wang, Nano Today 2010, 5, 540.
    [44] Z. L. Wang, S. Jinhui, Science 2006, 312, 242.
    [45] X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, Z. L. Wang, Nano Letters 2006, 6, 2768.
    [46] J.-H. He, C. L. Hsin, J. Liu, L. J. Chen, Z. L. Wang, Advanced Materials 2007, 19, 781.
    [47] D. A. Neamen, Semiconductor Physics and Devices Basic Principles, 2012.
    [48] Q. Kuang, C. Lao, Z. L. Wang, Z. Xie, L. Zheng, Journal of the American Chemical Society 2007, 129, 6070.
    [49] C. Pan, R. Yu, S. Niu, G. Zhu, Z. L. Wang, Acs Nano 2013, 7, 1803.
    [50] R. Yu, C. Pan, J. Chen, G. Zhu, Z. L. Wang, Advanced Functional Materials 2013, 23, 5868.
    [51] Y. Ruomeng, P. Caofeng, W. Zhong Lin, Energy & Environmental Science 2013, 6, 494.
    [52] S. Niu, Y. Hu, X. Wen, Y. Zhou, F. Zhang, L. Lin, S. Wang, Z. L. Wang, Advanced Materials 2013, 25, 3701.
    [53] H. Guofeng, Z. Ranran, Y. Ruomeng, D. Lin, P. Caofeng, W. Zhong Lin, Nano Research 2014, 7, 1083.
    [54] Q. Yang, X. Guo, W. Wang, Y. Zhang, S. Xu, D. H. Lien, Z. L. Wang, Acs Nano 2010, 4, 6285.
    [55] Y. Ruomeng, P. Caofeng, H. Youfan, L. Lin, L. Hongfei, L. Wei, C. Soojin, C. Dongzhi, W. Zhong Lin, Nano Research 2013, 6, 758.
    [56] D. Smith, Thin-Film Deposition: Principles and Practice, McGraw-Hill Education, 1995.
    [57] R. Yang, Y. Qin, L. Dai, Z. L. Wang, Nature Nanotechnology 2009, 4, 34.
    [58] C.-Y. Chen, G. Zhu, Y. Hu, J.-W. Yu, J. Song, K.-Y. Cheng, L.-H. Peng, L.-J. Chou, Z. L. Wang, Acs Nano 2012, 6, 5687.
    [59] Z. Zhang, K. Yao, Y. Liu, C. Jin, X. Liang, Q. Chen, L.-M. Peng, Advanced Functional Materials 2007, 17, 2478.

    下載圖示 校內:2020-08-25公開
    校外:2020-08-25公開
    QR CODE