| 研究生: |
蔡承祐 Tsai, Chen-Yu |
|---|---|
| 論文名稱: |
利用壓電電子學提昇A軸氮化鎵奈米線之紫外光感測效率 UV Responsivity Enhancement of A-axial GaN Nanowire via Piezophototronic Effect |
| 指導教授: |
劉全璞
Liu, Chuan‐Pu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 氮化鎵 、奈米線 、紫外光感測 、壓電電子學效應 |
| 外文關鍵詞: | GaN, nanowire, UV detector, piezophototronics |
| 相關次數: | 點閱:59 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用熱化學氣相沈積法成長之a軸氮化鎵奈米線,製作單根奈米線金屬-半導體-金屬(MSM)型之紫外光感測器,並首次運用壓電電子學效應(Piezophototronic effect)於此結構上提昇其紫外光感測效率。我們發現當我們施予一0.012%之張應力於奈米線時,感測器在325nm的紫外光光響應值大幅提昇了180%,由5×104(A/W)增進至1.3×105(A/W),此結果為目前已知利用氮化鎵奈米線感測紫外光最高的效率。除此之外,我們發現感測器之紫外光光響應與輸出電流會在一最佳化張應力下提昇至最大值,持續加大張應力則會使其下降。我們將此非線性之提昇現象,歸因於a軸氮化鎵奈米線特殊壓電電場分佈下產生之蕭機特能障效應(SBH effect)與載子束縛效應(Carrier trapping effect)相互競爭之結果。再更進一步測試擁有不同摻雜濃度a軸氮化鎵奈米線製程之元件後,我們發現隨著奈米線的摻雜濃度越高,提昇至最大光響應值所需之外加張應力越大。我們將此現象歸因於載子屏蔽效應(Carrier screening effect)屏蔽壓電電勢所致,且在蕭機特能障效應與載子束縛效應上屏蔽程度在不同載子濃度區間各有所異。
此研究首次展示了壓電電子學效應應用於提昇a軸氮化鎵奈米線之紫外光感測效率,並獲得了目前已知最高的325nm紫外光光響應值。此研究結果建議未來利用a軸氮化鎵奈米線建構之感測器,在最佳化的外加應力下能有效提昇感測器之感測效率。
For the first time, an ultrahigh UV responsivity of 105 (A/W) is demonstrated on a non-polar a-axial GaN nanowire metal-semiconductor-metal (MSM) UV photodetector incorporating piezophototronic effect.
It was observed that the UV responsivity of an a-axial GaN nanowire based MSM photodetector enhanced by a significant 180% from 5×104 to 1.3×105 (A/W) when a 0.012% tensile strain was applied on the nanowire. Moreover, the measured UV responsivity and output current enhances to a maximum at an optimum applied strain and then falls off. The non-linearity enhancement in UV responsivity with applied strain is attributed to the competition between Schottky barrier height (SBH) effect and carrier trapping effect, acting on carrier transport mechanisms induced by the unique piezopotential distribution in a strained a-axial GaN nanowire. By further comparing devices having different estimated carrier concentrations, we discovered that the maximum UV responsivity and output current shifted to higher tensile strain states as increasing carrier concentration. The phenomenon is attributed to the difference in carrier screening effect on the strain induced SBH lowering effect and carrier trapping effect in terms of magnitude.
The results from this research suggest an optimum amount of strain should be applied on future a-axial GaN nanowire based MSM type sensors for best performance enhancement.
[1] T. Mukai, D. Morita, S. Nakamura, Journal of Crystal Growth 1998, 189, 778.
[2] E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, C. Weisbuch, Applied Physics Letters 2011, 98.
[3] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, J. Hilsenbeck, Journal of Applied Physics 1999, 85, 3222.
[4] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, Japanese Journal of Applied Physics Part 2-Letters 1996, 35, L74.
[5] C.-H. Wang, W.-S. Liao, Z.-H. Lin, N.-J. Ku, Y.-C. Li, Y.-C. Chen, Z.-L. Wang, C.-P. Liu, Advanced Energy Materials 2014, 4.
[6] C. A. Berven, V. Dobrokhotov, D. N. McIlroy, S. Chava, R. Abdelrahaman, A. Heieren, J. Dick, W. Barredo, Ieee Sensors Journal 2008, 8, 930.
[7] Y. Wei, T. Nohova, S. Krishnankutty, R. Torreano, S. McPherson, H. Marsh, Applied Physics Letters 1998, 73, 1086.
[8] L. Li, H. Lu, Z. Yang, L. Tong, Y. Bando, D. Golberg, Advanced Materials 2013, 25, 1109.
[9] D. Kaimo, L. Liang, Advanced Materials 2014, 26, 2619.
[10] E. Monroy, F. Omnes, F. Calle, Semiconductor Science and Technology 2003, 18, R33.
[11] M. Razeghi, Proceedings of the Ieee 2002, 90, 1006.
[12] Z. L. Wang, Nanogenerators for Self-powered Devices and Systems, Georgia Institute of Technology 2011.
[13] S.-K. H. Takafumi Yao, Oxide and Nitride Semiconductors Processing, Properties, and Applications, 2008.
[14] S. Bloom, G. Harbeke, E. Meier, Ortenbur.Ib, Physica Status Solidi B-Basic Research 1974, 66, 161.
[15] S. Strite, H. Morkoc, Journal of Vacuum Science & Technology B 1992, 10, 1237.
[16] S. W. Kaun, M. H. Wong, U. K. Mishra, J. S. Speck, Semiconductor Science and Technology 2013, 28.
[17] K. You, H. Jiang, D. Li, X. Sun, H. Song, Y. Chen, Z. Li, G. Miao, H. Liu, Applied Physics Letters 2012, 100.
[18] H.-F. Lian, G.-S. Wang, H. Lu, F.-F. Ren, D.-J. Chen, R. Zhang, Y.-D. Zheng, Chinese Physics Letters 2013, 30.
[19] Z.-D. Huang, W.-Y. Weng, S.-J. Chang, Y.-F. Hua, C.-J. Chiu, T.-J. Hsueh, S.-L. Wu, Ieee Sensors Journal 2013, 13, 1187.
[20] B. W. Lim, Q. C. Chen, J. Y. Yang, M. A. Khan, Applied Physics Letters 1996, 68, 3761.
[21] P. C. Chang, Y. K. Su, K. J. Lee, C. L. Yu, S. J. Chang, C. H. Liu, Journal of Alloys and Compounds 2010, 504, S429.
[22] M. Misra, T. D. Moustakas, R. P. Vaudo, R. Singh, K. S. Shah, Proceedings of the SPIE - The International Society for Optical Engineering 1995, 2519, 78.
[23] M. A. Khan, M. S. Shur, Q. Chen, J. N. Kuznia, C. J. Sun, Electronics Letters 1995, 31, 398.
[24] E. Munoz, E. Monroy, J. A. Garrido, I. Izpura, F. J. Sanchez, M. A. SanchezGarcia, E. Calleja, B. Beaumont, P. Gibart, Applied Physics Letters 1997, 71, 870.
[25] S.-E. Ahn, H. J. Ji, K. Kim, G. T. Kim, C. H. Bae, S. M. Park, Y.-K. Kim, J. S. Ha, Applied Physics Letters 2007, 90.
[26] R. Yu, L. Dong, C. Pan, S. Niu, H. Liu, W. Liu, S. Chua, D. Chi, Z. L. Wang, Advanced Materials 2012, 24, 3532.
[27] X. Feng, L. Hai, X. Xiangqian, C. Dunjun, H. Ping, Z. Rong, Z. Youdou, Solid-State Electronics 2011, 57, 39.
[28] Z. Man, B. Jinhe, F. Xiuying, G. Feng, G. Yongsheng, Z. Yong, Z. Mei, S. Yufang, G. Fei, L. Jian, Physica B 2009, 404, 275.
[29] C.-W. Hsu, Y.-F. Chen, Y.-K. Su, Ieee Journal of Quantum Electronics 2014, 50, 35.
[30] K. M. A. Saron, M. R. Hashim, M. A. Farrukh, Superlattices and Microstructures 2013, 64, 88.
[31] A. Mueller, G. Konstantinidis, M. Androulidaki, A. Dinescu, A. Stefanescu, A. Cismaru, D. Neculoiu, E. Pavelescu, A. Stavrinidis, Thin Solid Films 2012, 520, 2158.
[32] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, D. Wang, Nano Letters 2007, 7, 137.
[33] R.-S. Chen, T.-H. Yang, H.-Y. Chen, L.-C. Chen, K.-H. Chen, Y.-J. Yang, C.-H. Su, C.-R. Lin, Applied Physics Letters 2009, 95.
[34] R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. V. Hart, T. Stoica, H. Luth, Nano Letters 2005, 5, 981.
[35] L. Dandan, W. Hui, Z. Wei, L. Heping, P. Wei, Applied Physics Letters 2009, 94, 172103 (3 pp.).
[36] Y. Hu, J. Zhou, P.-H. Yeh, Z. Li, T.-Y. Wei, Z. L. Wang, Advanced Materials 2010, 22, 3327.
[37] W. Y. Weng, T. J. Hsueh, S. J. Chang, S. B. Wang, H. T. Hsueh, G. J. Huang, Ieee Journal of Selected Topics in Quantum Electronics 2011, 17, 996.
[38] L. Rigutti, M. Tchernycheva, A. D. L. Bugallo, G. Jacopin, F. H. Julien, L. F. Zagonel, K. March, O. Stephan, M. Kociak, R. Songmuang, Nano Letters 2010, 10, 2939.
[39] R.-S. Chen, H.-Y. Chen, C.-Y. Lu, K.-H. Chen, C.-P. Chen, L.-C. Chen, Y.-J. Yang, Applied Physics Letters 2007, 91.
[40] X. Wang, Y. Zhang, X. Chen, M. He, C. Liu, Y. Yin, X. Zou, S. Li, Nanoscale 2014, 6, 12009.
[41] R. S. Chen, C. Y. Lu, K. H. Chen, L. C. Chen, Applied Physics Letters 2009, 95.
[42] M. Surniya, K. Yoshimura, T. Ito, K. Ohtsuka, S. Fuke, K. Mizuno, M. Yoshimoto, H. Koinuma, A. Ohtomo, M. Kawasaki, Journal of Applied Physics 2000, 88, 1158.
[43] Z. L. Wang, Nano Today 2010, 5, 540.
[44] Z. L. Wang, S. Jinhui, Science 2006, 312, 242.
[45] X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, Z. L. Wang, Nano Letters 2006, 6, 2768.
[46] J.-H. He, C. L. Hsin, J. Liu, L. J. Chen, Z. L. Wang, Advanced Materials 2007, 19, 781.
[47] D. A. Neamen, Semiconductor Physics and Devices Basic Principles, 2012.
[48] Q. Kuang, C. Lao, Z. L. Wang, Z. Xie, L. Zheng, Journal of the American Chemical Society 2007, 129, 6070.
[49] C. Pan, R. Yu, S. Niu, G. Zhu, Z. L. Wang, Acs Nano 2013, 7, 1803.
[50] R. Yu, C. Pan, J. Chen, G. Zhu, Z. L. Wang, Advanced Functional Materials 2013, 23, 5868.
[51] Y. Ruomeng, P. Caofeng, W. Zhong Lin, Energy & Environmental Science 2013, 6, 494.
[52] S. Niu, Y. Hu, X. Wen, Y. Zhou, F. Zhang, L. Lin, S. Wang, Z. L. Wang, Advanced Materials 2013, 25, 3701.
[53] H. Guofeng, Z. Ranran, Y. Ruomeng, D. Lin, P. Caofeng, W. Zhong Lin, Nano Research 2014, 7, 1083.
[54] Q. Yang, X. Guo, W. Wang, Y. Zhang, S. Xu, D. H. Lien, Z. L. Wang, Acs Nano 2010, 4, 6285.
[55] Y. Ruomeng, P. Caofeng, H. Youfan, L. Lin, L. Hongfei, L. Wei, C. Soojin, C. Dongzhi, W. Zhong Lin, Nano Research 2013, 6, 758.
[56] D. Smith, Thin-Film Deposition: Principles and Practice, McGraw-Hill Education, 1995.
[57] R. Yang, Y. Qin, L. Dai, Z. L. Wang, Nature Nanotechnology 2009, 4, 34.
[58] C.-Y. Chen, G. Zhu, Y. Hu, J.-W. Yu, J. Song, K.-Y. Cheng, L.-H. Peng, L.-J. Chou, Z. L. Wang, Acs Nano 2012, 6, 5687.
[59] Z. Zhang, K. Yao, Y. Liu, C. Jin, X. Liang, Q. Chen, L.-M. Peng, Advanced Functional Materials 2007, 17, 2478.