| 研究生: |
賴元章 Lai, Yuan-Zhang |
|---|---|
| 論文名稱: |
採用結合終端控制器與外骨骼系統之複合式上肢遠端機器輔助治療對中風患者之成效 Effects of Hybrid Robot-Assisted Therapy Combining End-effector and Exoskeleton Devices in Patients With Stroke |
| 指導教授: |
馬慧英
Ma, Hui-Ing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 職能治療學系 Department of Occupational Therapy |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 機器輔助治療 、中風 、複合式 、外骨骼 、終端控制 |
| 外文關鍵詞: | robot-assisted therapy, stroke, hybrid, exoskeleton, end-effector |
| 相關次數: | 點閱:60 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背景:過去研究已支持機器輔助治療 (Robot-assisted therapy, RAT) 對中風患者的肢體訓練具有正向效果。機器主要分為外骨骼型 (Exoskeletal type) 和終端控制型 (End-effector type) 兩種設計。然而,對於這兩種類型機器的成效優劣,文獻並未達成一致的定論。本研究首創提出將這兩種機器結合成複合式機器輔助治療,並與單獨使用外骨骼型及終端控制型機器做比較,以瞭解其在動作表現、日常生活功能和生活品質方面的介入成效。方法:本研究為單盲隨機控制試驗,採用便利取樣方式於醫院中招募受測者,並隨機分派至「複合式機器輔助治療組」、「外骨骼機器輔助治療組」以及「終端控制機器輔助治療組」。所有受測者均接受 18 次的介入,一次 60分鐘,每周 3 次,持續 6 周。訓練流程為機器輔助治療 40 分鐘 (10 分鐘被動模式、20 分鐘主動協助模式以及 10 分鐘主動模式) 加上功能性訓練 20分鐘。主要成效評估為動作表現,含:傅格梅爾評估量表 (Fugl-Meyer Assessment, FMA)、改良版艾許沃斯氏量表 (modified Ashworth scale, MAS)、沃夫動作功能測驗-時間及功能性能力分量表 (Wolf Motor Function Test [WMFT]–Time and Functional Ability Scale [FAS]);次要成效評估為日常生活功能以及生活品質,評估工具分別為動作活動日誌-使用量及使用品質 (Motor Activity Log [MAL]–Amount of Use [AOU] and Quality of Movement [QOM]) 以及中風影響量表 (Stroke Impact Scale, SIS)。本研究採用 KruskalWallis 定以分析三個不同組別在治療前和治療後之介入效果,並計算Cohen’s d 效果值分析組內以及組間差異以了解治療成效差異。結果:Kruskal-Wallis 分析結果顯示所有變項皆未達顯著差異。根據組內差異之效果值,「複合式機器輔助治療組」(n = 6) 在 FMA (d = 1.34)、MAS (d = 0.91) 以及 WMFT-FAS (d = 0.83) 有高程度的提升,在 WMFTTime (d = 0.5)、MAL-AOU (d = 0.51) 以及 MAL-QOM (d = 0.55) 有中等程度的改善,在 SIS (d = 0.16) 則僅有微小的改變。根據組間差異之效果值,「複合式機器輔助治療組」比「外骨骼機器輔助治療組」(n = 3) 在 MAL-AOU (d = 0.48) 以及 MAL-QOM (d = 0.40) 有較佳的改善;比「終端控制機器輔助治療組」(n = 4) 在 MAS (d = 0.88)、WMFT-FAS (d = 0.51) 以及MAL-AOU (d = 0.41) 有較佳的改善。結論:複合式機器輔助治療相較於外骨骼機器輔助治療在患側肢體的使用量和使用品質有較好的提升;和終端控制機器輔助治療相比,則在肌肉張力、功能性任務的動作品質以及患側肢體的使用量有較佳的改善。但未來研究需再增加受測者人數,並做追蹤評估分析長期效益。
Background: Previous studies have demonstrated the effectiveness of robot-assisted therapy (RAT) in upper extremity motor recovery for stroke patients. This research aimed to investigate the effectiveness of hybrid RAT, combining exoskeleton (EXO) and end-effector (EE) devices, on motor performance, activities of daily living (ADL), and quality of life (QoL) for subacute and chronic stroke patients. Methods: Participants were randomly assigned to the Hybrid, EXO, and EE groups. All participants received 18 sessions of intervention, lasting 60 minutes each, three times a week for six weeks. Assessments were conducted at both pre- and post-test. Results: The Hybrid group showed better improvement than the EXO group in the MAL–AOU (d = 0.48) and MAL–QOM (d = 0.40), and also had greater improvement than the EE group in the MAS (d = 0.88), WMFT–FAS (d = 0.51), and MAL–AOU (d = 0.41). Conclusion: As compared to the exoskeleton and end-effector RAT, the hybrid RAT exhibits some advantages in motor performance and ADL but not much improvement in QoL.
衛生福利部 (2022)。 腦血管疾病。https://www.hpa.gov.tw/Pages/List.aspx?nodeid=213。
胡名霞 (2019)。動作控制與動作學習 (第五版)。金名圖書。
李承昱、吳菁宜、蔣瑋齊、鄭朝謚、王瑋均(2018)。機器輔助治療對中風病患手功能復健成效之系統性文獻回顧。臺灣職能治療研究與實務雜誌,14(1),47-55。doi: 10.6534/jtotrp.201806_14(1).0005
洪珮瑄(2020)。上肢遠端機器輔助治療應用於中風患者上肢功能及其他健康相關表現之成效探索。(碩士論文)。國立成功大學,臺南市。
Aggogeri, F., Mikolajczyk, T., O’Kane, J. (2019). Robotics for rehabilitation of hand movement in stroke survivors. Advances in Mechanical Engineering. 11(4). 1-14. doi: 10.1177/1687814019841921
Balasubramanian, S., Klein, J., & Burdet, E. (2010). Robot-assisted rehabilitation of hand function. Current Opinion in Neurology, 23(6), 661-670. doi: 10.1097/WCO.0b013e32833e99a4
Bertani, R., Melegari, C., De Cola, M. C., Bramanti, A., Bramanti, P., & Calabrò, R. S. (2017). Effects of robot-assisted upper limb rehabilitation in stroke patients: A systematic review with meta-analysis. Neurological Sciences, 38(9), 1561-1569. doi: org/10.1007/s10072-017-2995-5
Bohannon, R. W., & Smith, M. B. (1987). Interrater reliability of a modified Ashworth Scale of muscle spasticity. Physical Therapy, 67(2), 206-207. doi: 10.1093/ptj/67.2.206
Carod-Artal, F. J., Coral, L. F., Trizotto, D. S., & Moreira, C. M. (2009). Self- and proxy-report agreement on the Stroke Impact Scale. Stroke, 40(10), 3308–3314. doi: 10.1161/STROKEAHA.109.558031
Calabrò, R. S., Accorinti, M., Porcari, B., Carioti, L., Ciatto, L., Billeri, L., Andronaco, V. A., Galletti, F., Filoni, S., & Naro, A. (2019). Does hand robotic rehabilitation improve motor function by rebalancing interhemispheric connectivity after chronic stroke? Encouraging data from a randomised-clinical-trial. Clinical Neurophysiology, 130(5), 767-780. doi: 10.1016/j.clinph.2019.02.013
Chae, J., Yang, G., Park, B. K., & Labatia, I. (2002). Muscle weakness and cocontraction in upper limb hemiparesis: Relationship to motor impairment and physical disability. Neurorehabilitation and Neural Repair, 16, 241–248. doi: 10.1177/154596830201600303
Cha, Y. J., Yoo, E. Y., Jung, M. Y., Park, S. H., & Park, J. H. (2012). Effects of functional task training with mental practice in stroke: A meta-analysis. NeuroRehabilitation, 30(3), 239–246. doi: 10.3233/NRE-2012-0751
Chang, W. H., & Kim, Y. H. (2013). Robot-assisted therapy in stroke rehabilitation. Journal of Stroke, 15(3), 174. doi: 10.5853/jos.2013.15.3.174
Chen, Y. W., Chiang, W. C., Chang, C. L., Lo, S. M., & Wu, C. Y. (2022). Comparative effects of EMG-driven robot-assisted therapy versus task-oriented training on motor and daily function in patients with stroke: A randomized cross-over trial. Journal of NeuroEngineering and Rehabilitation, 19(1), 1-9. doi: 10.1186/s12984-021-00961-w
Clarke, P., & Black, S. E. (2005). Quality of life following stroke: Negotiating disability, identity, and resources. Journal of Applied Gerontology, 24(4), 319-336. doi: 10.1177/0733464805277976
Duncan, P. W., Bode, R. K., Min Lai, S., Perera, S., & Glycine Antagonist in Neuroprotection Americans Investigators. (2003). Rasch analysis of a new stroke-specific outcome scale: The Stroke Impact Scale. Archives of Physical Medicine and Rehabilitation, 84(7), 950–963. doi: 10.1016/s0003-9993(03)00035-2
Franceschini, M., Goffredo, M., Pournajaf, S., Paravati, S., Agosti, M., De Pisi, F., Galafate, D., & Posteraro, F. (2018). Predictors of activities of daily living outcomes after upper limb robot-assisted therapy in subacute stroke patients. PloS one, 13(2), e0193235. doi: 0.1371/journal.pone.0193235
Fitts, P. M. (1964) Perceptual-motor skill learning. Categories of Human Learning, 47, 381-391.
French, B., Thomas, L. H., Leathley, M. J., Sutton, C. J., McAdam, J., Forster, A., Langhorne, P., Price, C. I., Walker, A., & Watkins, C. L. (2007). Repetitive task training for improving functional ability after stroke. Cochrane Database of Systematic Reviews, (4), CD006073. doi: 10.1002/14651858.CD006073.pub2
French, B., Thomas, L. H., Coupe, J., McMahon, N. E., Connell, L., Harrison, J., et al. (2016). Repetitive task training for improving functional ability after stroke. Cochrane Database of Systematic Reviews. 11:CD006073. doi: 10.1002/14651858.CD006073.pub3
Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S. (1975). The post stroke hemiplegic patient. I. a method for evaluation of physical performance. Scandinavian Journal of Rehabilitation Medicine, 7, 13-31.
Gregson, J. M., Leathley, M. J., Moore, A. P., Smith, T. L., Sharma, A. K., & Watkins, C. L. (2000). Reliability of measurements of muscle tone and muscle power in stroke patients. Age and Ageing, 29(3), 223–228. doi: 10.1093/ageing/29.3.223
Guadagnoli, M. A., & Lee, T. D. (2004). Challenge point: A framework for conceptualizing the effects of various practice conditions in motor learning. Journal of Motor Behavior, 36(2), 212–224. doi: 10.3200/JMBR.36.2.212-224
Guzzetta, A., Staudt, M., Petacchi, E., Ehlers, J., Erb, M., Wilke, M., Krägeloh-Mann, I., & Cioni, G. (2007). Brain representation of active and passive hand movements in children. Pediatric Research, 61(4), 485–490. doi: 10.1203/pdr.0b013e3180332c2e
Hayward, K. S., & Brauer, S. G. (2015). Dose of arm activity training during acute and subacute rehabilitation post stroke: A systematic review of the literature. Clinical Rehabilitation, 29(12), 1234-1243. doi: 10.1177/0269215514565395
Hatem, S. M., Saussez, G., Della Faille, M., Prist, V., Zhang, X., Dispa, D., & Bleyenheuft, Y. (2016). Rehabilitation of motor function after stroke: A multiple systematic review focused on techniques to stimulate upper extremity recovery. Frontiers in Human Neuroscience, 10, 442. doi: 10.3389/fnhum.2016.00442
Heo, P., Gu, G. M., Lee, S. J., Rhee, K., & Kim, J. (2012). Current hand exoskeleton technologies for rehabilitation and assistive engineering. International Journal of Precision Engineering and Manufacturing, 13(5), 807-824. doi: 10.1007/s12541-012-0107-2
Hesse, S., Kuhlmann, H., Wilk, J., Tomelleri, C., & Kirker, S. G. (2008). A new electromechanical trainer for sensorimotor rehabilitation of paralysed fingers: A case series in chronic and acute stroke patients. Journal of NeuroEngineering and Rehabilitation, 5, 21. doi: 10.1186/1743-0003-5-21
Heuer, H., & Lüttgen, J. (2015). Robot assistance of motor learning: A neuro-cognitive perspective. Neuroscience and Biobehavioral Reviews, 56, 222–240. doi: 10.1016/j.neubiorev.2015.07.005
Hsieh, Y. W., Wu, C. Y., Lin, K. C., Chang, Y. F., Chen, C. L., & Liu, J. S. (2009). Responsiveness and validity of three outcome measures of motor function after stroke rehabilitation. Stroke, 40(4), 1386-1391. doi: 10.1161/STROKEAHA.108.530584
Hsieh, Y. W., Wu, C. Y., Lin, K. C., Yao, G., Wu, K. Y., & Chang, Y. J. (2012). Dose-response relationship of robot-assisted stroke motor rehabilitation: The impact of initial motor status. Stroke, 43(10), 2729–2734. doi: 10.1161/STROKEAHA.112.658807
Hunter, S. M., & Crome, P. (2002). Hand function and stroke. Reviews in Clinical Gerontology, 12(1), 68-81. doi: 10.1017/S0959259802012194
Huang, V. S., & Krakauer, J. W. (2009). Robotic neurorehabilitation: A computational motor learning perspective. Journal of NeuroEngineering and Rehabilitation, 6(1), 5. doi: 10.1186/1743-0003-6-5
Huang, P. C., Hsieh, Y. W., Wang, C. M., Wu, C. Y., Huang, S. C., & Lin, K. C. (2014). Predictors of motor, daily function, and quality-of-life improvements after upper-extremity robot-assisted rehabilitation in stroke. American Journal of Occupational Therapy, 68(3), 325–333. doi: 10.5014/ajot.2014.010546
Hung, C. S., Hsieh, Y. W., Wu, C. Y., Lin, Y. T., Lin, K. C., & Chen, C. L. (2016). The effects of combination of robot-assisted therapy with task-specific or impairment-oriented training on motor function and quality of life in chronic stroke. Physical Medicine and Rehabilitation, 8(8), 721–729. doi: 10.1016/j.pmrj.2016.01.008
Huang, Y., Lai, W. P., Qian, Q., Hu, X., Tam, E. W., & Zheng, Y. (2018). Translation of robot-assisted rehabilitation to clinical service: A comparison of the rehabilitation effectiveness of EMG-driven robot hand assisted upper limb training in practical clinical service and in clinical trial with laboratory configuration for chronic stroke. Biomedical Engineering Online, 17(1), 1-17. doi: 10.1186/s12938-018-0516-2
Iwamoto, Y., Imura, T., Suzukawa, T., Fukuyama, H., Ishii, T., Taki, S., Imada, N., Shibukawa, M., Inagawa, T., Araki, H., & Araki, O. (2019). Combination of exoskeletal upper limb robot and occupational therapy improve activities of daily living function in acute stroke patients. Journal of Stroke and Cerebrovascular Diseases, 28(7), 2018–2025. doi: 10.1016/j.jstrokecerebrovasdis.2019.03.006
Kiran, S., & Thompson, C. K. (2019). Neuroplasticity of language networks in aphasia: Advances, updates, and future challenges. Frontiers in Neurology, 10, 295. doi: 10.3389/fneur.2019.00295
Kim, G. J., Taub, M., Creelman, C., Cahalan, C., O'Dell, M. W., & Stein, J. (2019). Feasibility of an Electromyography-Triggered hand robot for people after chronic stroke. American Journal of Occupational Therapy, 73(4), 7304345040p1–7304345040p9. doi: 10.5014/ajot.2019.030908
Kluzik, J., Diedrichsen, J., Shadmehr, R., & Bastian, A. J. (2008). Reach adaptation: What determines whether we learn an internal model of the tool or adapt the model of our arm? Journal of NeuroPhysiology, 100(3), 1455–1464. doi: 10.1152/jn.90334.2008
Kutner, N. G., Zhang, R., Butler, A. J., Wolf, S. L., & Alberts, J. L. (2010). Quality-of-life change associated with robotic-assisted therapy to improve hand motor function in patients with subacute stroke: A randomized clinical trial. Physical Therapy, 90(4), 493-504. doi: 10.2522/ptj.20090160
Kwakkel, G., van Peppen, R., Wagenaar, R. C., Wood Dauphinee, S., Richards, C., Ashburn, A., Miller, K., Lincoln, N., Partridge, C., Wellwood, I., & Langhorne, P. (2004). Effects of augmented exercise therapy time after stroke: A meta-analysis. Stroke, 35(11), 2529–2539. doi: 10.1161/01.STR.0000143153.76460.7d
Lee, G., An, S., Lee, Y., Lee, D., & Park, D. S. (2015). Predictive factors of hypertonia in the upper extremity of chronic stroke survivors. Journal of Physical Therapy Science, 27(8), 2545–2549. doi: 10.1589/jpts.27.2545
Lee, S. H., Park, G., Cho, D. Y., Kim, H. Y., Lee, J. Y., Kim, S., Park, S. B., & Shin, J. H. (2020). Comparisons between end-effector and exoskeleton rehabilitation robots regarding upper extremity function among chronic stroke patients with moderate-to-severe upper limb impairment. Scientific Reports, 10(1), 1-8. doi: 10.1038/s41598-020-58630-2
Li, M., He, B., Liang, Z., Zhao, C. G., Chen, J., Zhuo, Y., Xu, G., Xie, J., & Althoefer, K. (2019). An attention-controlled hand exoskeleton for the rehabilitation of finger extension and flexion using a rigid-soft combined mechanism. Frontiers in Neurorobotics, 13, 34. doi: 10.3389/fnbot.2019.00034
Li, W., & Xu, D. (2021). Application of intelligent rehabilitation equipment in occupational therapy for enhancing upper limb function of patients in the whole phase of stroke. Medicine in Novel Technology and Devices, 12, 100097. doi: 10.1016/j.medntd.2021.100097
Liao, W. W., Wu, C. Y., Hsieh, Y. W., Lin, K. C., & Chang, W. Y. (2012). Effects of robot-assisted upper limb rehabilitation on daily function and real-world arm activity in patients with chronic stroke: A randomized controlled trial. Clinical Rehabilitation, 26(2), 111–120. doi: 10.1177/0269215511416383
Liu, H., Song, L. P., & Zhang, T. (2014). Mental practice combined with physical practice to enhance hand recovery in stroke patients. Behavioural Neurology, 2014, 876416. doi: 10.1155/2014/876416
Linder, S. M., Rosenfeldt, A. B., Bay, R. C., Sahu, K., Wolf, S. L., & Alberts, J. L. (2015). Improving quality of life and depression after stroke through telerehabilitation. American Journal of Occupational Therapy, 69(2), 6902290020p1–6902290020p10. doi:10.5014/ajot.2015.014498
Lum, P. S., Godfrey, S. B., Brokaw, E. B., Holley, R. J., & Nichols, D. (2012). Robotic approaches for rehabilitation of hand function after stroke. American Journal of Physical Medicine & Rehabilitation, 91(11), S242-S254. doi: 10.1097/PHM.0b013e31826bcedb
MacIsaac, R., Ali, M., Peters, M., English, C., Rodgers, H., Jenkinson, C., Lees, K. R., Quinn, T. J., & VISTA Collaboration (2016). Derivation and validation of a modified short form of the stroke impact scale. Journal of the American Heart Association, 5(5), e003108. doi: 10.1161/JAHA.115.003108
Meseguer-Henarejos, A. B., Sánchez-Meca, J., López-Pina, J. A., & Carles-Hernández, R. (2018). Inter- and intra-rater reliability of the Modified Ashworth Scale: A systematic review and meta-analysis. European Journal of Physical and Rehabilitation Medicine, 54(4), 576–590. doi: 10.23736/S1973-9087.17.04796-7
Mehrholz, J., Pollock, A., Pohl, M., Kugler, J., & Elsner, B. (2020). Systematic review with network meta-analysis of randomized controlled trials of robotic-assisted arm training for improving activities of daily living and upper limb function after stroke. Journal of NeuroEngineering and Rehabilitation, 17(1), 1-14. doi: 10.1186/s12984-020-00715-0
Mima, T., Sadato, N., Yazawa, S., Hanakawa, T., Fukuyama, H., Yonekura, Y., & Shibasaki, H. (1999). Brain structures related to active and passive finger movements in man. Brain, 122(10), 1989–1997. doi: 10.1093/brain/122.10.1989
Morris, D. M., Uswatte, G., Crago, J. E., Cook III, E. W., & Taub, E. (2001). The reliability of the wolf motor function test for assessing upper extremity function after stroke. Archives of Physical Medicine and Rehabilitation, 82(6), 750–755. doi: 10.1053/apmr.2001.23183
Molteni, F., Gasperini, G., Cannaviello, G., & Guanziroli, E. (2018). Exoskeleton and end-effector robots for upper and lower limbs rehabilitation: Narrative review. Physical Medicine and Rehabilitation, 10(9), S174-S188. doi: 10.1016/j.pmrj.2018.06.005
Nilsen, D. M., Gillen, G., & Gordon, A. M. (2010). Use of mental practice to improve upper-limb recovery after stroke: A systematic review. American Journal of Occupational Therapy, 64(5), 695–708. doi: 10.5014/ajot.2010.09034
Nouri, F., & Lincoln, N. (1987). An extended activities of daily living scale for stroke patients. Clinical Rehabilitation, 1(4), 301–305. doi: 10.1177/02692155870010040
Orihuela-Espina, F., Roldán, G. F., Sánchez-Villavicencio, I., Palafox, L., Leder, R., Sucar, L. E., & Hernández-Franco, J. (2016). Robot training for hand motor recovery in subacute stroke patients: A randomized controlled trial. Journal of Hand Therapy, 29(1), 51–57. doi: 10.1016/j.jht.2015.11.006
Pandyan, A. D., Johnson, G. R., Price, C. I. M., Curless, R. H., Barnes, M. P., & Rodgers, H. (1999). A review of the properties and limitations of the Ashworth and modified Ashworth Scales as measures of spasticity. Clinical Rehabilitation, 13(5), 373–383. doi: 10.1191/026921599677595404
Platz, T., Pinkowski, C., van Wijck, F., Kim, I. H., Di Bella, P., & Johnson, G. (2005). Reliability and validity of arm function assessment with standardized guidelines for the fugl-meyer test, action research arm test and box and block test: A multicentre study. Clinical Rehabilitation, 19(4), 404-411. doi: 10.1191/0269215505cr832oa
Pons, J. L., Raya, R., & Gonzalez, J. (2015) Emerging Therapies in Neurorehabilitation II. Biosystems & Biorobotics; Springer-Verlag. pp.197-233.
Reinkensmeyer, D. J., Emken, J. L., & Cramer, S. C. (2004). Robotics, motor learning, and neurologic recovery. Annual Review of Biomedical Engineering, 6, 497–525. doi: 10.1146/annurev.bioeng.6.040803.140223
Reinkensmeyer, D., & Dietz, V. (2016). Neurorehabilitation Technology (2nd ed). Berlin; Heidelberg: Springer-Verlag. Chapter 8. doi: 10.1007/978-3-319-28603-7
Salmoni, A. W., Schmidt, R. A., & Walter, C. B. (1984). Knowledge of results and motor learning: A review and critical reappraisal. Psychological Bulletin, 95(3), 355–386. doi: 10.1037/0033-2909.95.3.355
Sale, P., Mazzoleni, S., Lombardi, V., Galafate, D., Massimiani, M. P., Posteraro, F., Damiani, C., & Franceschini, M. (2014). Recovery of hand function with robot-assisted therapy in acute stroke patients: A randomized-controlled trial. International Journal of Rehabilitation Research, 37(3), 236–242. doi: 10.1097/MRR.0000000000000059
Schmidt, R. A., & Bjork, R. A. (1992). New conceptualizations of practice: Common principles in three paradigms suggest new concepts for training. Psychological Science, 3, 207-217. doi: 10.1111/j.1467-9280.1992.tb00029.x
Schmidt R. A., & Lee, T. D. (2014). Motor Learning and Performance (5th ed.). Champaign, IL: Human Kinetics.
See, J., Dodakian, L., Chou, C., Chan, V., McKenzie, A., Reinkensmeyer, D. J., & Cramer, S. C. (2013). A standardized approach to the Fugl-Meyer assessment and its implications for clinical trials. Neurorehabilitation and Neural Repair, 27(8), 732-741. doi: 10.1177/1545968313491000
Seidler, R. D., Kwak, Y., Fling, B. W., & Bernard, J. A. (2013). Neurocognitive mechanisms of error-based motor learning. Advances in Experimental Medicine and Biology, 782, 39–60. doi: 10.1007/978-1-4614-5465-6_3
Stefano, M., Patrizia, P., Mario, A., Ferlini, G., Rizzello, R., & Rosati, G. (2014). Robotic upper limb rehabilitation after acute stroke by NeReBot: Evaluation of treatment costs. BioMed Research International, 2014, 1-5. doi: 10.1155/2014/265634
Takahashi, C. D., Der-Yeghiaian, L., Le, V., Motiwala, R. R., & Cramer, S. C. (2008). Robot-based hand motor therapy after stroke. Brain, 131(2), 425–437. doi: 10.1093/brain/awm311
Taub, E., Morris, D. M., Crago, J., King, D. K., Bowman, M., Bryson, C., Bishop, S., Pearson, S., & Shaw, S. E. (2011). Wolf motor function test (WMFT) manual. Birmingham: University of Alabama, CI Therapy Research Group, 1-31.
Taub, E., McCulloch, K., Uswatte, G., Morris, D. M., Bowman, M., & Crago, J. (2011). Motor activity log (mal) manual. UAB Training for CI Therapy, 1, 18.
Timmermans, A. A., Seelen, H. A., Willmann, R. D., & Kingma, H. (2009). Technology-assisted training of arm-hand skills in stroke: Concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design. Journal of NeuroEngineering and Rehabilitation, 6(1), 1-18. doi: 10.1186/1743-0003-6-1
Tollár, J., Nagy, F., Csutorás, B., Prontvai, N., Nagy, Z., Török, K., et al. (2021). High frequency and intensity rehabilitation in 641 subacute ischemic stroke patients. Archives of Physical Medicine and Rehabilitation. 102, 9–18. doi: 10.1016/j.apmr.2020.07.012
Uswatte, G., Taub, E., Morris, D., Light, K., & Thompson, P. A. (2006). The Motor Activity Log-28: Assessing daily use of the hemiparetic arm after stroke. Neurology, 67(7), 1189–1194. doi: 10.1212/01.wnl.0000238164.90657.c2
Van der Lee, J. H., Beckerman, H., Knol, D. L., de Vet, H. C., & Bouter, L. M. (2004). Clinimetric properties of the motor activity log for the assessment of arm use in hemiparetic patients. Stroke, 35(6), 1410–1414. doi: 10.1161/01.STR.0000126900.24964.7e
Veerbeek, J. M., Langbroek-Amersfoort, A. C., Van Wegen, E. E., Meskers, C. G., & Kwakkel, G. (2017). Effects of robot-assisted therapy for the upper limb after stroke: A systematic review and meta-analysis. Neurorehabilitation and Neural Repair, 31(2), 107-121. doi: 10.1177/1545968316666957
Wang, H., Camicia, M., Terdiman, J., Mannava, M. K., Sidney, S., & Sandel, M. E. (2013). Daily treatment time and functional gains of stroke patients during inpatient rehabilitation. Physical Medicine and Rehabilitation, 5(2), 122-128. doi: 10.1016/j.pmrj.2012.08.013
Whitall, J., Savin, D. N., Jr, Harris-Love, M., & Waller, S. M. (2006). Psychometric properties of a modified Wolf Motor Function test for people with mild and moderate upper-extremity hemiparesis. Archives of Physical Medicine and Rehabilitation, 87(5), 656–660. doi: 10.1016/j.apmr.2006.02.004
Yu, N., Estévez, N., Hepp-Reymond, M. C., Kollias, S. S., & Riener, R. (2011). fMRI assessment of upper extremity related brain activation with an MRI-compatible manipulandum. International Journal of Computer Assisted Radiology and Surgery, 6(3), 447–455. doi: 10.1007/s11548-010-0525-5
校內:2029-01-22公開