| 研究生: |
蔡宜哲 Tsai, I-Tse |
|---|---|
| 論文名稱: |
以光調控鈷鐵氧體磊晶薄膜之磁性 Optical Control of Magnetism in Epitaxial CoFe2O4 Thin Films |
| 指導教授: |
陳宜君
Chen, Yi-Chun 楊展其 Yang, Jan-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 鈷鐵氧體 、亞鐵磁性 、熱效應 、光控磁性 |
| 外文關鍵詞: | Cobalt ferrite(CoFe2O4), Ferrimagnetism, Thermal effect, Optical control |
| 相關次數: | 點閱:109 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光控磁性研究對於磁性儲存技術等應用具有極大重要性,光調控不僅可以以聚焦程度控制照光區域範圍,且調控過程為非接觸式,在製程上有一定程度方便性。本篇研究主要以光為調控物性手法,在室溫環境下控制鈷鐵氧體(CoFe2O4)磊晶薄膜的磁疇結構與磁矩方向。本研究利用磁力顯微鏡(Magnetic Force Microscope, MFM)觀測照光前後的CFO薄膜磁疇結構變化,另外也透過表面電位顯微鏡(Kelvin Force Microscope, KFM)與拉曼光譜來幫助探討照光引起磁性變化的機制。
透過改變光的偏振與波長、照光強度與時間、樣品膜厚等變因,我們推論光致磁性變化機制是由熱效應主導,並經由拉曼光譜估算出照光引起的升溫效果。另外透過KFM,我們發現特定照光條件下會發生發生表面電荷累積情形,但經由實驗證明,表面電荷與磁性變化沒有因果關係。最後更進一步討論在外加磁場下的光致磁性變化,發現照光後的磁疇磁矩方向變化同時受到樣品初始磁化狀態與外加磁場影響。
Complex oxides have caught significant attention for the development of the next-generation electronic devices due to their versatile functionalities and the tunability via the external stimuli, such as electrical and magnetic fields. To broaden the application of complex oxides, the new pathway to control the physical properties is on demand. Cobalt ferrite (CoFe2O4), a ferrimagnetic inverse spinel, is potential in the application of magnetic storage device because of its high magnetization and coercivity. In this study, we introduce the optical method to control the magnetic domain configuration of CoFe2O4 thin film. We use not only magnetic force microscopy (MFM) to investigate the change of the magnetic state of the area illuminated by laser light but also Kelvin Force Microscope (KFM) and Raman spectroscopy to analyze the possible mechanisms behind the changes of magnetic properties induced by light illumination.
[1] 姜政熙,鎳鐵氧/鈦酸鍶鋇/鈦酸鍶磊晶薄膜之磁電藕合特性,成功大學碩士論文(2008)。
[2] B. M. Moskowitz, Hitchhiker's Guide to Magnetism (1991).
[3] T. C. Wei, H. P. Wang, H.J. Liu, D. S. Tsai, J. J. Ke , C. L. Wu, Y. P. Yin, Q. Zhan, G. R. Lin, Y. H. Chu, and J. H. He, “ Photostriction of strontium ruthenate,” Nature communications 8, 15018 (2017).
[4] Ming-Min Yang and Marin Alexe, “ Light‐Induced Reversible Control of Ferroelectric Polarization in BiFeO3,” Advanced Materials 30, 1704908 (2018).
[5] 邱宇祐,混相鐵酸鉍之鐵電域光調控,成功大學碩士論文(2017)。
[6] A. Talapatra and J. Mohanty, “Laser induced local modification of magnetic domain in Co/Pt multilayer,” Journal of Magnetism and Magnetic Materials 418, 224 (2016).
[7] S. R. Bakaul, W. Lin, and T. Wu, “Engineering magnetic domain in manganite thin films by laser interference,” APPLIED PHYSICS LETTERS 100, 012403 (2012).
[8] L. Pan and D. B. Bogy, “Data storage: Heat-assisted magnetic recording,” Nature Photonics 3, 189 (2009).
[9] J. Hohlfeld, T. Gerrits, M. Bilderbeek, T. Rasing, H. Awano, and N. Ohta, “ Fast magnetization reversal of GdFeCo induced by femtosecond laser pulses,” Physical Review B 65, 012413 (2001).
[10] T. Ogasawara, N. Iwata, Y. Murakami, H. Okamoto, and Y. Tokura, “Submicron-scale spatial feature of ultrafast photoinduced magnetization reversal in TbFeCo thin film,” APPLIED PHYSICS LETTERS 94, 162507 (2009).
[11] J. P. Van der Ziel, P. S. Pershan, and L. D. Malmstrom, “Optically-induced magnetization resulting from the inverse Faraday effect,” Physical Review Letters 15, 190 (1965).
[12] A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “ Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435, 655 (2005).
[13] C. A. Perroni and A. Liebsch, “ Magnetization dynamics in dysprosium orthoferrites via the inverse Faraday effect,” Physical Review B 74, 134430 (2006).
[14] C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing,“All-optical magnetic recording with circularly polarized light,” Physical review letters 99, 047601 (2007).
[15] K. Vahaplar, A. M. Kalashnikova, A. V. Kimel, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, “ Ultrafast path for optical magnetization reversal via a strongly nonequilibrium state,” Physical review letters 103, 117201 (2009).
[16] C. H. Lambert, S. Mangin, B. C. S.V araprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton,“All-optical control of ferromagnetic thin films and nanostructures”,Science 345, 1337 (2014).
[17] W. D. Rice, P. Ambwani, M. Bombeck, J. D. Thompson, G. Haugstad, C. Leighton, and S. A. Crooker, “Persistent optically induced magnetism in oxygen-deficient strontium titanate,” Nature materials 13, 481 (2014).
[18] Soshin Chinkazumi著、張煦、李學養合譯,磁性物理學,聯經出版社,新北市(1992)。
[19] R. S. Turtelli, M. Atif, N. Mehmood, F. Kubel, K. Biernacka, W. Linert, K. Biernacka, W. Linert, R. Grössinger, Cz. Kapusta, and M.Sikora, “Interplay between the cation distribution and production methods in cobalt ferrite,” Materials Chemistry and Physics 132, 832 (2012).
[20] M. Khodaei, S. S.Ebrahimi, Y. J. Park, J. M. Ok, J. S. Kim, J. Son, and S. Baik, “Enhancement of in-plane magnetic anisotropy in (111)-oriented Co0. 8Fe2. 2O4 thin film by deposition of PZT top layer,” Applied Physics A 117, 1153 (2014).
[21] T. Yu, Z. X. Shen, Y. Shi, and J. Ding, “Cation migration and magnetic ordering in spinel CoFe2O4 powder: micro-Raman scattering study,” Journal of Physics Condensed Matter 14 L613 (2002).
[22] 吳昆鴻,鈷鐵氧體薄膜在可撓式基板上的應變調製拉曼研究,成功大學碩士論文(2016)。
[23] B.D Cullity and C.D. Graham, Introduction to magnetic material, Wiley-IEEE Press , New York, 2009.
[24] H. J. Liu, L. Y. Chen, Q. He, C. W. Liang, Y. Z. Chen, Y. S. Chien, Y. H. Hsieh,
S. J. Lin, E. Arenholz, C. W. Luo, Y. L. Chueh, Y. C. Chen, and Y. H. Chu,“Epitaxial photostriction–magnetostriction coupled self-assembled nanostructures,” Acs Nano 6, 6952 (2012).
[25] F. Zavaliche, H. Zheng, L. Mohaddes-Ardabili, S. Y. Yang, Q. Zhan, P. Shafer, E. Reilly, R. Chopdekar, Y. Jia, P. Wright, D. G. Schlom, Y. Suzuki, and R. Ramesh, “Electric field-induced magnetization switching in epitaxial columnar nanostructures,” Nano letters 5, 1793 (2005).
[26] 王洸富,屏蔽電荷對108度域壁成核動態機制之影響,成功大學碩士論文(2010)。
[27] 曾賢德、果尚志,奈米電性之掃描探針量測技術,物理雙月刊廿十五卷五期(2003)。
[28] Magnetic Force Microscopy (MFM) Applicable to Dimension™ Series and MultiMode™ Systems, Digital Instruments, 1996.
[29] J. R. Ferraro, K. Nakamoto, and C. W. Brown, Introduction Raman Spectroscopy, Academic Press, San Diego, 1994
[30] A. Kirilyuk, A. V. Kimel, and T. Rasing, “Ultrafast optical manipulation of magnetic order,” Reviews of Modern Physics 82, 2731 (2010).
[31] B. J. Kip and R. J. Meier, “Determination of the local temperature at a sample during Raman experiments using Stokes and anti-Stokes Raman bands,” Applied spectroscopy 44, 707 (1990).