簡易檢索 / 詳目顯示

研究生: 吳孟純
Wu, Meng-chun
論文名稱: 玻璃熔解窯爐之物理模型研究
A Physical Model Study of the Glass Melting Furnace
指導教授: 黃文星
Hwang, Weng-Sing
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 88
中文關鍵詞: 熔解玻璃玻璃窯爐
外文關鍵詞: glass furnace, glass melting, glass tank
相關次數: 點閱:51下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 玻璃基板的品質好壞可以由最終產品中介在物以及殘留氣泡的多寡決定,而玻璃熔解窯爐批料進入混合以及澄清攪拌之過程均勻與否,與殘存物質去除有密切的關係,因此如何能有效提升混成時間與減少滯留區是一項重要的課題。由於真實窯爐內之資訊及流場取得不易,而全尺寸模型之研究有其困難之處。因此本研究建構一實際窯爐十分之一的壓克力模型,其相關裝置設備皆仿照原始窯爐操作。利用高黏度的矽油取代熔融玻璃,並以高分子追蹤粒子進行物理實驗的量測與觀察,日後可驗證數學模擬。

    本研究分別探討三種加熱溫度與有無底吹氣體(流量40cc/min)等不同的操作條件,結果發現加熱條件改變與底吹氣體會帶動不同的區域攪拌環流並且影響其流動軌跡,能有效提升滯留時間,減少停滯區的範圍,以助生產高品質的玻璃基板。本研究綜合幾種評估指標後並找出較適合操作條件以提供數模模式分析、窯爐工作者參考依據。

    The quality of the glass substrate depends on the number of the bubble and the impurities in the final products, but whether the process of bath enters and clarifies in the glass melting furnace homogeneous or not relate to the elimination of residue, so how to improve the mixing time effectively and reduce the residence area is important . Because it is difficult to received the information and flows field in the true furnace and the research of the full-scale model is really difficult. This research builds an acrylic model which scale is 1/10 of real one, and its equipment relevantly imitates the primitive furnace. Utilize silicon oil of high viscosity to replace melting glass and high polymer tracers to measure and observe the physical experiment, furthermore ,expect to verify the
    numerical model in the future.

    This research confer three kinds of heating temperature separately and with or without bubbler (40cc/min).The result indicate that the heating condition and bubbler can effect circulation area and increase the resident time, besides, decrease the dead zone and improve the quality of
    glass substrate. This research combines some estimate index and find out relatively appropriate condition consulted to numerical model and furnace worker.

    第一章 前言 1 1.1 研究背景 1 1.2 玻璃窯爐研究之發展歷程 4 1.2.1 玻璃窯爐物理模型之發展進程 4 1.2.2 玻璃窯爐數學模型之發展進程 6 1.2.3 玻璃窯爐模型之評估指標 7 1.3 研究目的 8 第二章 研究方法 12 2.1 玻璃窯爐簡述 13 2.2 物理模式介紹 13 第三章 研究步驟 16 3.1 油模實驗裝置 16 3.2 實驗流程介紹 17 3.3 實驗條件分述 17 3.4 油模實驗評估指標 19 第四章 結果與討論 31 4.1 底吹氣體型態探討 31 4.2 溫度測量 32 4.3 無底吹氣體 32 4.3.1 單加熱電極或輻射溫度改變 32 4.3.2 加熱電極與熱輻射溫度同時操作 36 4.4 通入底吹氣體 37 4.4.1 單加熱電極或熱輻射溫度改變 38 4.4.2 加熱電極與熱輻射同時操作 41 4.5 滯留區與粒子分佈探討 43 4.6 綜合探討與品質評估 44 第五章 結論 85 第六章 參考文獻 86

    1. B. Balkanli and A. Ungan, “Numerical Simulation of Bubbler Behavior in Glass Melting Tanks. Part 1. Under Ideal Conditions”, Glass Technology, 37(1), pp.29-34, 1996.
    2. B. Balkanli and A. Ungan, “Numerical Simulation of Bubbler Behavior in Glass Melting Tanks. Part 2. Dissolved gas concentration”, Glass Technology, 37(3), pp.101-105, 1996.
    3. B. Balkanli and A. Ungan, “Numerical Simulation of Bubbler Behavior in Glass Melting Tanks. Part 1. Under Ideal Conditions”, Glass Technology, 37(1), pp.29-34, 1996.
    4. D. Shamp, O.Marin and M. Joshi, “Using Coupled Combustion/Glass Bath Numerical Simulation”, Ceram. Eng. Sci. Pro., 20, No.1, pp.23-36, 1999.
    5. M. Petrick, S. L. Cheng and B. Golchert, “Coupled Combustion Space/Glass Melt Furnace Simulation”, Ceram. Eng. Sci. Pro., 22, No.1, pp.247-264. 2001.
    6. B. Golchert, S. L. Chang and M. Petrick, “Validation of the Combustion Space Simulation of a Glass Furnace Model”, Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition, Nov.11-16, pp.31-39, 2001.
    7. V. Nefedov and R. M. M. Mattheij, “Simulation of flow in a glass tank”, In D. Cioranescu and J.-L. Lions(Eds.), “Non-linear Partial Differential Equations and their Applications”, Elsevier, pp.571-590, 2002.
    8. M. K. Choudhary, “Recent Advances in Mathematical Modeling of Flow and Heat Transfer Phenomena in Glass Furnace”, J.Am. Ceram. Soc., 85[5], pp.1030-103
    9. R. Viskanta, “Review of three-dimensional mathematical modeling of glass melting”, J. Non-Crystalline Solids, 177, pp.347-362, 1994.
    10. P. Schill and J. Chmelar, “Use of computer flow dynamics in glass technology”, J. Non-Crystalline Solids, 345&346, pp.771-776, 2004.
    11. H. A. Schaeffer, “Scientific and technological challenge of industrial glass melting”, Solid State Ionics, 105, pp.265-270, 1998.
    12. A. G. Fedorov and L. Pilon, “Glass foams: formation, transport properties, and heat, mass, and radiation transfer”, J. Non-Crystalline Solids, 311, pp.154-173, 2002.
    13. C. Moukarzel, W. S. Kuhn and D. Clodic, “Numerical precision of minimum residence time calculations for glass tanks”, Glass Sci. Technology, 76(2), pp.81-90, 2003.
    14. V. S. Meshka, V. I. Ureki, and V. Ya. Dzyuzer, “ Experience in Reconstructing a Glass Making Furnace”,Glass and Ceramics , Vol.64, No.5-6,pp.163-166,2007,translated from Stekoi Keramika, No.5, pp.17 -20,May,2007.
    15. V. I. Kondrashov, “ The effect of mechanical agitation on convective homogenization of glass melt”, Glass and Ceramics, Vol. 58, No. 3 - 4, pp.117-120,2001,translated from Stekloi Keramika, No. 4, pp. 3 - 5, April, 2001.
    16. N. A. Pankova, “ The phenomenon of glass melt running over the quell-punkt in glass-melting furnaces”, Glass and Ceramics, Vol. 60, No. 9 - 10, pp.266-269,2003,translated from Stekloi Keramika, No. 9, pp. 14 - 17, September, 2003.
    17. 宋宜蓁, “LCD用玻璃於窯爐中流動行為之模擬研究”,國立成功大學材料科學與工程學系碩士論文, 2004
    18. 李建賢, “玻璃熔解窯爐中流動與熱傳行為之研究”, 國立成功大學材料科學與工程學系碩士論文, 2005

    下載圖示 校內:2009-08-22公開
    校外:2009-08-22公開
    QR CODE