| 研究生: |
孫士堯 Sun, Shi-Yao |
|---|---|
| 論文名稱: |
氧化銦鉬蒸鍍靶材的製作
及其薄膜光電性質之研究 Target synthesis and optoelectronic properties of the evaporated Mo-doped In2O3 (IMO) films |
| 指導教授: |
黃肇瑞
Huang, Jow-Lay |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 159 |
| 中文關鍵詞: | 透明導電氧化物 、銦鉬氧化物 |
| 外文關鍵詞: | transparent conducting oxide, molybdenum doped indium oxide |
| 相關次數: | 點閱:73 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於平面顯示器產業近幾年來的蓬勃發展,再加上太陽能電池、建築用玻璃鍍膜等能源產業對於光學導電膜的需求日增,因此持續開發新ㄧ代光學導電膜就成了刻不容緩的研究主題。最新開發出的氧化銦鉬(Indium molybdenum oxides, IMO)薄膜因為具有高電子遷移率的特性,在兼顧低電阻率的前提下,能有效提升近紅外光的穿透率,因此獲得廣泛地重視。然而依據現有文獻報導,高載子遷移率的IMO薄膜皆以高溫鍍膜製程製作而成,本研究將以常溫鍍膜為主,結合粉體技術自備靶材,以高電漿密度蒸鍍的方式將氧化銦鉬膜鍍在玻璃基板上,探討靶材中氧化鉬添加量、氧氣含量、退火溫度等製程因子對於IMO膜的光電性質的影響,並由化學組成、組成化學態、微觀結構及缺陷方程式推導薄膜內的反應機構,再進一步由薄膜的研究結果,修正靶材合成製程。
就IMO靶材合成製程而言,由降低的晶格常數、電阻率及XRD分析之MoO3揮發與第二相析出情況,確認在大氣環境下以800℃持温一小時的靶材合成條件最佳;就高電漿密度常溫蒸鍍IMO膜而言,由微結構、化學鍵結分析及載子濃度與遷移率的綜合結果, 、 與 在低氧含量與低MoO3添加量中扮演離子散射效應的主要因子;中性化合物 與 則在高氧含量與高MoO3添加量中扮演中性散射效應的影響因子;在適當氧含量下,可獲得最低電阻率3.56x10-4 Ω cm,可見光穿透率更可達到~85%;若是再進一步針對此條件進行真空退火處理,在最高溫度250℃時載子遷移率已可達75.8 cm2/Vs,且近紅外光區的穿透率得到明顯提升,In-Mo+6-O的鍵結型態應是造成高載子遷移率的重要原因。
利用還原氣氛在常溫下蒸鍍IMO膜,可降低電阻率及增加製程穩定性,更可以有效提升常溫鍍膜下的載子遷移率,最高值可達53.6 cm2/Vs,相較於氧化製程(10±1 cm2/Vs)高出甚多。 被解離成以四價Mo+4取代三價In+3位置的 、以及-OH、H2O填補結構缺陷,皆能有效降低離子散射效應,載子遷移率因而增加;另外, 中性散射效應是造成高MoO3添加量的IMO膜載子遷移率低的主要原因;若是提高鍍膜溫度,載子遷移率能夠再被提升,但是過多的 中性化合物的吸收效應反而會造成可見光與近紅外光穿透率的降低。因此,延伸在還原氣氛下製作IMO靶材的實驗結果,利用還原氣氛可將MoO3完全固溶進入In2O3晶格,此一靶材合成製程,將可以在常溫、氧化氣氛鍍膜下,降低中性化合物的吸收效應,提高載子遷移率與穿透率。
Transparent conductive oxide (TCO) films have been extensively researched because of their numerous potential applications, such as flat panel display, solar cell, low emissive and electro-chromic windows and thin film photovoltaics. The innovative TCO in opto-electronic applications is molybdenum-doped indium oxide (IMO), which offers an acceptable performance in terms of high mobility, high near-IR transmittance and conductivity. This work proposed a low temperature (R.T.) fabrication of IMO films on high density plasma evaporation (HDPE) system, comprising of In2O3/MoO3 targets with different MoO3-doping contents. The electrical and optical properties of the IMO films as a function of oxygen content and annealing temperature were also investigated. Moreover, by using XRD and XPS analysis, the scattering mechanisms and the structural properties of the IMO film were examined to determine their correlation with the defect models and opto-electronic properties.
For the IMO target synthesis in the atmosphere, the optimized parameter of 800℃, 1hr was decided by examining the second phase, decreasing lattice constants and bulk resistivity. From the structural, electrical and optical properties of the IMO films, this work proposed that the neutral complex and dominated the scattering mechanism at high doping content and oxygen content, whereas ionized complex , and dominated at low doping level or oxygen content. Uniform 99/1 IMO crystallized films with minimum resistivity of 3.56x10-4 Ω cm and average visible transmittance of ~85% were produced at an optimum oxygen content of ~9%. The crystallization mechanisms were measured by vacuum annealing at 150, 200 and 250℃ for 30min. The results of XRD, XPS and electrical properties suggested that the room-temperature crystallization was induced from the highest compressive strain, caused by the charged associates and oxygen vacancies. The highest mobility of 75.8 cm2/Vs of the IMO film was obtained at 250℃ due to the In-Mo+6-O clusters and strain relaxation between (222) and (440) orientation.
Hydrogen was added to the Ar+O2 gas mixture during the preparation of the IMO films. With hydrogen, the decreasing resistivity and the broadened process window were mainly caused from an apparent increase in the mobility. Higher mobility (53.6 cm2/Vs) under the reduced process rather than lower one (10±1 cm2/Vs) under oxidized process was obtained. created from Mo+4 substituting In+3 and the incorporation of –OH and H2O into vacancies could decrease the ionized scattering effects. The scattering effect of neutral clusters was responsible for the low mobility of high doping IMO films. The light absorption of also deteriorated the transmittance in the visible-near IR spectral range. Therefore, for high mobility consideration, the IMO targets were synthesized under reduced atmosphere and MoO3 was incorporated totally into In2O3 lattice. The IMO films with high mobility would be expected by using reduced IMO targets.
1.楊明輝, 透明導電膜材料與成膜技術的新發展, 工業材料, 第189期(2000) pp.161~174.
2.C. G. Granqvist and A. Hultåker: Transparent and conducting ITO films: new developments and applications. Thin Solid Films 411, 1 (2002).
3.B. G. Lewis and D. C. Paine: Applications and processing of transparent conducting oxides. MRS Bull. 25, 22 (2000).
4.D. S. Ginley, C. Bright: Transparent conducting oxides, MRS Bull. 25, 15 (2000).
5.A. J. Freeman, K.R. Poeppelmeier, T. O. Mason, R. P. H. Chang, and T. J. Marks: Chemical and thin film strategies for new transparent conducting oxides. MRS Bull. 25, 45 (2000).
6.T. Minami, H. Sonohara, T. Kakumu and S. Takata: Highly transparent and conductive Zn2In2O5 thin films prepared by RF magnetron sputtering. Jpn. J. Appl. Phys. 34, L971 (1995).
7.T. Minami, T. Kakumu, Y. Takeda and S. Takata: Highly transparent and conductive ZnO-In2O3 thin films prepared by d.c. magnetron sputtering. Thin Solid Films 290-291, 1 (1996).
8.T. Minami, T. Kakumu, and S. Takata: Preparation of transparent and conductive ZnO-In2O3 films by radio frequency magnetron sputtering. J. Vac. Sci. Technol. A 14, 1704 (1996).
9.J.-K. Lee, H.-M. Kim, S.-H. Park, J.-J. Kim, and S.-H. Sohn: Heat treatment effects on electrical and optical properties of ternary compound In2O3-ZnO films. J. Appl. Phys. 92, 5761 (2002).
10.Y. Shigesato, I. Yasui, Y. Hayashi, S. Takaki, T. Oyama and M. Kamei: Effects of water partial pressure on the activated electron beam evaporation process to deposit tin-doped indium-oxide films. J. Vac. Sci. Technol. A 13, 268 (1995).
11.S. Y. Sun, J. L. Huang and D. F. Lii: Effects of oxygen contents on the electrical and optical properties of indium molybdenum oxide films fabricated by high density plasma evaporation. J. Vac. Sci. Technol. A 22, 1235 (2004).
12.Yet-Ming Chiang, Dunbar Birnie III and W. David Kingery, Physical Ceramics, (1997) 13~27, 110~135 .
13.Y. Shigesato, S. Takaki, and T. Haranoh: Electrical and structural properties of low resistivity tin-doped indium oxide films. J. Appl. Phys. 71, 3356 (1992).
14.T. Oyama, N. Hashimoto, J. Shimizu, Y. Akao, H. Kojima, K. Alkawa, and K. Suzuki: Low resistance indium tin oxide films on large scale glass substrate. J. Vac. Sci. Technol. A 10, 1682 (1992).
15.P. K. Song, Y. Shigesato, M. Kamei, and I. Yasui: Electrical and structural properties of Tin-doped indium oxide films deposited by dc sputtering at room temperature. Jpn. J. Appl. Phys. Part 1 38, 2921 (1999).
16.P. F. Carcia, R. S. Mclean, M. H. Reilly, Z. G. Li, L. J. Pillione and R.F. Messier: Influence of energetic bombardment on stress, resistivity, and microstructure of indium tin oxide films grown by radio frequency magnetron sputtering on flexible polyester substrates. J. Vac. Sci. Technol. A 21, 745 (2003).
17.V. Craciun, D. Craciun, Z. Chen, J. Hwang, R. K. Singh. Room temperature growth of indium tin oxide thin films by ultraviolet-assisted pulsed laser deposition. Applied Surface Science 168, 118 (2000).
18.Y. Meng, X. L. Yang, H. X. Chen, J. Shen, Y. M. Jiang, Z. J. Zhang, and Z. Y. Hua: Molybdenum-doped indium oxide transparent conductive thin films. J. Vac. Sci. Technol. A 20, 288 (2002).
19.Y. Meng, X. L. Yang, H. X. Chen, J. Shen, Y. M. Jiang, Z. J. Zhang, and Z. Y. Hua: A new transparent conductive thin film In2O3:Mo. Thin Solid Films 394, 219 (2001).
20.Y. Yoshida, T. A. Gessert, C. L. Perkins and T. J. Coutts: Development of radio-frequency magnetron sputtered indium molybdenum oxide. J. Vac. Sci. Technol. A 21, 1092 (2003).
21.Y. Yoshida, D. M. Wood, T. A. Gessert and T. J. Coutts: High-mobility, sputtered films of indium oxide doped with molybdenum. Appl. Phys. Lett. 84, 2097 (2004).
22.C. Warmsingh, Y. Yoshida, D. W. Readey, C. W. Teplin, J. D. Perkins, P. A. Parilla, L. M. Gedvilas, B. M. Keyes, and D. S. Ginley: High-mobility transparent Mo-doped In2O3 thin films by pulsed laser deposition. J. Appl. Phys. 95, 3831 (2004).
23.H. Enoki and J. Echigoya: Electron microscopic study of the 3SnO2.2 In2O3 intermediate compound. Phys. Stat. Sol. (a) 132, K1 (1992).
24.H. Enoki and J. Echigoya and H. Suto: The intermediate compound in the In2O3-SnO2 system. J. Mat. Sci.26, 4110 (1991).
25.Y. B. Li, Y. Bando, D. Golberg, and K. Kurashima: Field emission from MoO3 nanobelts. Appl. Phys. Lett. 81, 5048 (2002).
26.溫志中、賴明雄, ITO濺鍍靶之開發與應用, 工業材料, 第179期 (2001) pp.145~152.
27.H. Odaka, Y. Shigesato, T. Murakami and S. Iwata: Electronic structure analyses of Sn-doped In2O3. Jpn. J. Appl. Phys. Part 1 40, 3231 (2001).
28.C. Kittel, Introduction to solid state physics, 7th ed. (John Wiley & Sons, Inc., New York, USA, 1996), pp. 156-158.
29.R. L. Weiher: Electrical properties of single crystals of indium oxide. J. Appl. Phys. 33, 2834 (1962).
30.J. H. W. De Wit, G. Van. Unen and M. Lahey: Electron concentration and mobility in In2O3. J. Phys.Chem. Solids. 38, 819 (1977).
31.D. H. Zhang and H. L. Ma: Scattering mechanisma of charge carriers in transparent conducting oxide films. Appl. Phys. A 62, 487 (1996).
32.N. Kikuchi, E. Kusano, E. Kishio, A. Kinbara, and H. Nanto: Effects of excess oxygen introduced during sputter deposition on carrier mobility in as-deposited and postannealed indium-tin-oxide films. J. Vac. Sci. Technol. A 19, 1636 (2001).
33.N. Kikuchi, E. Kusano, H. Nanto, A. Kinbara, and H. Hosono: Phonon scattering in electron transport phenomena of ITO films. Vacuum 59, 492 (2000).
34.楊明輝, 金屬氧化物透明導電材料的基本原理, 工業材料, 第179期(2001) pp.134~144.
35.L. Gupta, A. Mansingh and P. K. Srivastava: Band gap narrowing and the band structure of tin-doped indium oxide films. Thin Solid Films 176, 33 (1989).
36.R. Stuck: In2O3(Sn) and SnO2(F) films-Application to solar energy conversion, Part II-Electrical and optical properties. Mat. Res. Bull. 14, 163 (1979).
37.K. L. Chopra, S. Major and D. K. Pandya: Transparent conductors-A status review. Thin Solid Films 102, 1 (1983).
38.I. Hamberg and C. G. Granqvist: Evaporated Sn-doped In2O3 films-Basic optical properties and applications to energy-efficient windows. J. Appl. Phys. 60, R123 (1986).
39.G. Frank and H. Köstlin: Electrical properties and defect model of tin-doped indium oxide layers. Appl. Phys. A 27, 197 (1982).
40.Mo-O compounds such as MoO2.8, Mo4O11, In3Mo11O17 or In11Mo40O62.
41.D. Mergel and Z. Qiao: Correlation of lattice distortion with optical and electrical properties of In2O3:Sn films. J. Appl. Phys. 95, 5608 (2004).
42.M. Buchanan, J. B. Webb, and D. F. Williams: Preparation of conducting and transparent thin films of tin-doped indium oxide by magnetron sputtering. Appl. Phys. Lett. 37, 213 (1980).
43.T. J. Vink, W. Walrave, J. L. C. Daams, P. C. Baarslag, J. E. A. M. van den Meerakker: On the homogeneity of sputter-deposited ITO films, Part I. Stress and microstructure. Thin Solid Films 266, 145 (1995).
44.K. Suzuki, N. Hashimoto, T. Oyama, J. Shimizu, Y. Akao and H. Kojima: Large scale and low resistance ITO films formed at high deposition rates. Thin Solid Films 226, 104 (1993).
45.B. D. Cullity, Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley Publishing Company, Inc., USA, 1978), pp. 363-367.
46.H. P. Klug and L. E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. (Wiley, New York, USA, 1974), Chap. 9
47.D. C. Paine. T. Whitson, D. Janiac, R. Beresford, and Cleva Ow Yang: A study of low temperature crystallization of amorphous thin film indium-tin-oxide. J. Appl. Phys. 12, 8445 (1999).
48.J. C. C. Fan and J. B. Goodenough. X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films. J. Appl. Phys. 48, 3524 (1977).
49.A. J. Nelson and H. Aharoni: X-ray photoelectron spectroscopy investigation of ion beam sputtered indium tin oxide films as a function of oxygen pressure during deposition. J. Vac. Sci. Technol. A 5, 231 (1987).
50.T. Ishida, H. Kobayashi, and Y. Nakato: Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements. J. Appl. Phys. 73, 4344 (1993).
51.H. Kobayashi, T. Ishida, K. Nakamura, Y. Nakato and H. Tsubomura: Properties of indium tin oxide films prepared by the electron beam evaporation method in relation to characteristics of indium tin oxide/silicon oxide/silicon junction solar cells. J. Appl. Phys. 72, 5288 (1992).
52.K. Suzuki, N. Hashimoto, T. Oyama, J. Shimizu, Y. Akao and H. Kojima: Large scale and low resistance ITO films formed at high deposition rates. Thin Solid Films 226, 104 (1993).
53.B. Chapman, Glow Discharge Processes-sputtering and plasma etching, (John Wiley & Sons, Inc., USA, 1980), Chap. 5.
54.N. Mori. Superconductivity in transparent Sn-doped In2O3 films. J. Appl. Phys. 73, 1327 (1993).
55.Z. Wang and X. Hu. Structural and electrochemical characterization of ‘open-structured’ ITO films. Thin Solid Films 392, 22 (2001).
56.Y. Shigesato, Y. Hayashi and T. Haranoh: Doping mechanisms of tin-doped indium oxide films. Appl. Phys. Lett. 61, 73 (1992).
57.C. H. L. Weijtens: Influence of the Deposition and Anneal Temperature on the Electrical Properties of Indium Tin Oxide. J. Electrochem. Soc., 138, 3432 (1991).
58.W.-F. Wu and B.-S. Chiou: Properties of radio-frequency magnetron sputtered ITO films without in-situ substrate heating and post-deposition annealing. Thin Solid Films 247, 201 (1994).
59.T. Matsuoka, J. Kuwata, Y. Fujita and A. Abe: An XPS study of blackening of indium-tin oxide film during deposition of dielectric films by rf magnetron sputtering. Jpn. J. Appl. Phys. 27, L1199 (1988).
60.G. Sanon, R. Rup and A. Mansingh: Band-gap narrowing and band structure in degenerate tin oxide (SnO2) films. Phys. Rev. B 44, 5672 (1991).
61.K.-F. Berggren and B. E. Sernelius: Band-gap narrowing in heavily doped many-valley semiconductors. Phys. Rev. B 24, 24 (1981).
62.K.-J. Kim and Y. R. Park: Large and abrupt optical band gap variation in In-doped ZnO. Appl. Phys. A 78, 475 (2001).
63.G. Haacke: New figure of merit for transparent conductors. J. Appl. Phys. 47, 4086 (1976).
64.V. K. Jain and A. P. Kulshreshtha: Indium tin oxide transparent conducting coatings on silicon solar cells and their “figure of merit”. Solar Energy Materials 4, 151 (1981).
65.M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, and J. Stollenwerk, Thin Solid Films 326, 72 (1998).
66.C. Liu, T. Matsutani, T. Asanuma, K. Murai, M. Kiuchi, E. Alves and M. Reis: Room-temperature growth of crystalline indium tin oxide films on glass using low-energy oxygen-ion-beam assisted deposition. J. Appl. Phys. 93, 2262 (2003).
67.B. Hekmatshoar, D. Shahrjerdi, S. Mohajerzadeh, A. Khakifirooz, A. Goodarzi and M. Robertson: Low temperature crystallization of germanium on plastic by externally applied compressive stress. J. Vac. Sci. Technol. A 21, 752 (2003).
68.G. B. Gonzalez, J. B. Cohen, J.-H. Hwang, T. O. Mason, J. P. Hodges and J. D. Jorgensen: Neutron diffraction study on the defect structure of indium–tin–oxide. J. Appl. Phys. 89, 2550 (2001).
69.F. Zhu,.C. H. A. Huan, K. Zhang, and A. T. S. Wee: Investigation of annealing effects on indium tin oxide thin films by electron energy loss spectroscopy. Thin Solid Films 359, 244 (2000).
70.M. Quass, C. Eggs , and H. Wulff: Structural studies of ITO thin films with the Rietveld method. Thin Solid Films 332, 277 (1998).
71.P. Nath and R. F. Bunshah: Preparation of In2O3 and Tin-Doped In2O3 Films by a Novel Activated Reactive Evaporation Technique. Thin Solid Films 69, 63 (1980).
72.F. O. Adurodija, H. Izumi, T. Ishihara, H. Yoshioka, M. Motoyama, and K. Murai: Influence of substrate temperature on the properties of indium oxide thin films. J. Vac. Sci. Technol. A 18, 814 (2000)
73.S. K. Choi and J. I. Lee: Effect of film density on electrical properties of indium tin oxide films deposited by dc magnetron reactive sputtering. J. Vac. Sci. Technol. A 19, 2043 (2001).
74.M. Ando, E. Nishimura, K.-i. Onisawa, and T. Minemura: Effect of microstructures on nanocrystallite nucleation and growth in hydrogenated amorphous indium-tin-oxide films. J. Appl. Phys. 93, 1032 (2003).
75.E. Nishimura, M. Ando, K.-i. Onisawa, and M. Takabatake: Structural change during annealing of amorphous indium-tin oxide films deposited by sputtering with H2O addition. Jpn. J. Appl. Phys. 35, 2789 (1996).
76.G.L. Harding and B. Window: DC magnetron reactively sputtered indium-tin-oxide films produced using argon-oxygen-hydrogen mixtures. Solar Energy Materials 20, 367 (1990).
77.S. Ishibashi, Y. Higuchi, Y. Ota, and K. Nakamura: Low resistivity indium-tin oxide transparent conductive films. I. Effect of introducing H2O gas or H2 gas during direct current magnetron sputtering. J. Vac. Sci. Technol. A 8, 1399 (1995).
78.H. Enokida, F. Shoji, N. Nouchi, and L. Suning: Effect of hydrogen on the electrical properties of indium-tin-oxide films by Ar-Plasma sputtering. The Sixth International Symposium on Sputtering and Plasma Processes. (2001) pp. 379-382.
79.Y. Shigesato, I. Yasui, Y. Hayashi, S. Takaki, T. Oyama, M. Kamei: Effects of water partial pressure on the activated electron beam evaporation process to deposit tin-doped indium-oxide films. J. Vac. Sci. Technol. A 13 268 (1995).
80.P. C. Cosby, J. Chem. Phys. 98 (1993) 9560.
81.D. H. Zhang and H. L. Ma: Scattering mechanisms of charge carriers in transparent conducting oxide films. Appl. Phys. A 62, 487 (1996).
82.J. E. A. M. van den Meerakker, E. A. Meulenkamp, M. Scholten: (Photo)electrochemical characterization of tin-doped indium oxide. J. Appl. Phys. 74, 3282 (1993).
83.Y. Ohhata, F. Shinoki, and S. Yoshida: Optical properties of r.f. reactive sputtered tin-doped In2O3 films. Thin Solid Films 59, 255 (1979).
84.K. Zhang, F. Zhu, C. H. A. Huan, and A. T. S. Wee: Indium tin oxide films prepared by radio frequency magnetron sputtering method at a low processing temperature. Thin Solid Films 376, 255 (2000).