簡易檢索 / 詳目顯示

研究生: 王文弘
Wang, Wen-Hong
論文名稱: 三維加高展弦比轉接段向量推力系統之性能與流場分析
Numerical Investigation of Three-Dimensional Thrust-Vectoring System with High-Aspect-Ratio Transition Duct
指導教授: 梁勝明
Liang, Shen-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 79
中文關鍵詞: 轉接段向量推力
外文關鍵詞: transition duct, vectoring thrust
相關次數: 點閱:57下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用數值模擬的方法,來分析高展弦比(AR=15)轉接段對向量推力系統內流場的性質與噴嘴性能的影響。所採用的數值方法是以有限體積法採用三階上風外插與限制函數,時間積分上採用顯式三階段的兩階Runge-Kutta method,求解三維、非軸對稱、可壓縮尤拉方程式。狀態方程式以理想氣體方程式來加以描述,並假設向量推力系統壁面為絕熱條件,入口為次音速流,給定上游條件;出口為超音速流,故直接外插求得。
    為驗證基本格點數量是否足夠表現流場特性,將區間內各邊上的格點數加倍,來比較格點的效應,比較結果顯示所選取格點數量足夠。以加轉接段之無偏折角噴嘴(D1N00)的結果與實驗值[1]作比較,結果顯示,此數值方法之結果與實驗之比對,均相當吻合,能提供可靠的結果及參考依據。再針對不同噴嘴外型(N00、N05、N10、N15、N20),分析轉接段對噴嘴性能及出口流場的影響。
    噴嘴內的流場顯示隨著折流板角度改變,噴嘴內音速線(Sonic line)位置的移動、斜震波(Oblique shock)與膨脹扇(Expansion fan)也跟著改變。在固定壓力比下,出口的壓力分佈對總推力的貢獻不大,但向量角度到達20°的情形下,將產生推力的負壓損耗。
    而加轉接段D1與無限長之轉接段假設(使得進入噴嘴流場為均勻流)的比較結果顯示,流經轉接段後,流場會因轉接段截面外型變化所導致的壓力梯度,產生壓力與速度的不均勻分佈,此流場變化對噴嘴的性能、推力角度無影響,但會改變其出口截面的壓力線分佈,尤其當噴嘴折流板偏折角改變小於10度時,其出口壓力扭曲值為入口均勻流的結果的兩倍。
    減短轉接段的變化長度使轉接段內產生分離區,D2N00的結果中,非黏性解並無模擬出紊流解中出現的小區域分離,而D3N00於轉接段內出現大區域的分離,非黏性解之壁上壓力與壁上分離點位置與實驗值吻合。轉接段內分離區的出現對性能的影響並不顯著,但會因渦流的產生而導致轉接段內的冷卻問題。

    In this study, numerical simulation is used to investigate the flow properties and nozzle performance of thrust-vectoring nozzles with high-aspect-ratio circular-to-rectangular transition duct. Using a third-order modified Osher-Chakravarthy (MOC) upwind finite volume method for space descritization and a explicit three-stage second order Runge-Kutta method for time descritization, the three-dimensional compressible Euler equations are solved. The configurations of investigated nozzles or transition ducts includes N00 (0°)、N05 (5°)、N10 (10°)、N15 (15°) 、N20 (20°) and D1 (Ld = 1.0)、D2 (Ld = 0.75)、D3 (Ld = 0.50) respectively.
    With the present result of D1N00, we find that the inviscid-flow result is very close to that of experimental data. Namely, the viscous effect has less influence on the performance of thrust-vectoring system. Thus, we use inviscid-flow model to investigate the 3D thrust-vectoring system with ideal gas. The grid effect on the numerical solution is investigated.
    For different flap angles, it is found that the sonic line, oblique shock and expansion fan are varied. With a fixed NPR value, pressure distribution at the nozzle exit has less contribution to net thrust. But when flap change angle reaches 20°, negative pressure difference at the nozzle exit results in the loss of net thrust.
    From the results of cases D1N00~D1N20, the transition duct results in a non-uniform flow in the vectoring-thrust system. The non-uniform effect changes the pressure distribution at the nozzle exit. Especially when the average flap change angle is less than 10°, the pressure distortion is nearly twice of the result of the uniform inflow. Comparing the result of the D1 case with that of no transition duct(under uniform-inflow assumption), it is surprisingly found that the effect of the transition duct acting on the flow field has less influence to the performance of nozzle and thrust angles.
    With shorter lengths of transition ducts (the D2、D3 cases), flow separation appears and results in a cooling problem of transition duct because of the vortex formation. Inviscid flow model doesn’t well predict small separation region in the D2N00 case, but predicts accurate wall pressure and separation point in the D3N00 case. In this case, there is a large separation region in the transition duct.

    第一章 緒論 1 1-1研究動機 1 1-2文獻回顧及方法 3 第二章 數值方法 5 2-1統御方程式 5 2-2數值公式 6 2-3 MOC法 7 2-4時間積分 9 2-5邊界條件 9 2-6收斂判定 11 第三章 格點產生 13 3-1圓變方轉接段設計 13 3-2向量噴嘴設計 14 3-3格點產生 14 第四章 結果與討論 17 4-1數值驗証 17 4-2高展弦比轉接段 18 4-3向量推力噴嘴 20 4-4轉接段對噴嘴的影響 22 4-5不同變化長度轉接段之影響 24 第五章 結論與建議 26 附錄A 27 參考文獻 29

    1. A. Bailey, L. L. Price and J. G. Pipes, “Effect of Ambient Pressure on Nozzle Centerline Flow Properties,” AIAA J., Vol. 23, No. 6, pp. 953, June 1985.
    2. C. W. Alcorn, M. A. Croom, M. S. Francis, and H. Ross, “The X-31 Aircraft: Advances in Aircraft Agility and Performance,” Prog. Aerosp. Sci., Vol. 32, No. 4, pp. 377-413, 1996.
    3. D. O. Davis, and F. B. Gessner, “Experimental Investigation of Turbulent Flow Through a Circular-to-Rectangular Transition Duct”, AIAA Journal, Vol. 30, No. 2, February, 1992.
    4. E. A. Bare and D. E. Reubush, “Static Internal Performance of a Two-Dimensional Convergent-Divergent Nozzle with Thrust Vectoring,” NASA TP-2721, July 1987
    5. F. J. Capone, “Static Performance of Five Twin-Engine Nonaxisymmetric Nozzles with Vectoring and Reversing Capability,” AIAA TP-1224, May 1978.
    6. F. J. Capone and M. L. Mason, “An Experimental Investigation of Thrust Vectoring Two-Dimensional Convergent-Divergent Nozzles Installed in a Twin-Engine Model at High Angles of Attack,” NASA TM-4155, Feb. 1990.
    7. J. D. Anderson, Jr., “Fundamentals of Aerodynamics,” McGraw-Hill Inc., Chapter 10, 1984.
    8. J. G. Taylor, “Static Investigation of a Two-Dimensional Convergent-Divergent Exhaust Nozzle with Multiaxis Thrust-Vectoring Capability,” NASA TP-2973, Apr. 1990.
    9. J. R. Burley, and J. R. Carlson, “Circular-to-Rectangular Ducts for High-Aspect ratio Nonaxisymmetric Nozzles”, AIAA-85-1346, July, 1985.
    10. Lin, S. Y., Wu, T. M., and Chin, Y. S., “An Upwind Finite-Volume Scheme with a Triangular Mesh for Conservation Laws, ”Journal of Computational Physics, 107,No.2, pp.324-337, 1993b.
    11. Lin, S. Y., Chin, Y. S., and Wang, Y. Y., ”Numerical Investigations on Two Dimensional Canard-Wing Aerodynamic Interference, ” Journal of Aircraft, 31,No.3, pp.672-679, 1994.
    12. R. J. Re and L. D. Leavitt, “Static Internal Performance Including Thrust Vectoring and Reversing of Two-Dimensional Convergent-Divergent Nozzles,” NASA TP-2253, Feb. 1984.
    13. R. Whitford, “Design for Air Combat,” Jane's Publishing Inc., pp. 207-211, 1987.
    14. S. P. Pao, and J. R. Carlson, “Computational Investigation of Circular-to-Rectangular Transition Ducts”, Journal of Propulsion and Power, Vol. 10,No. 1,Jan.-Feb,1994.
    15. T. H. Pulliam, “Euler and Thin Layer Navier-Stokes Codes: ARC2D, ARC3D,” Notes for Computational Fluid Dynamics User’s Workshop, The University of Tennessee Space Institute, Tullahoma, Tennessee, March 12-16, 1984.
    16. 王立杰, “俄製戰機超級機動性之探討,” 空軍學術月刊, 第526期, Sep. 1990.
    17. 林上安, “圓形截面轉變為矩形截面管道流場之風洞測試”, 國立成功大學碩士論文, June, 1987.
    18. 陳 驊, “管口爆炸波與渦漩交互作用及消音探討”, 國立成功大學博士論文, Dec., 2002.
    19. 黃百易, “雙方程式紊流模式分析平板之過渡流場”, 國立成功大學博士論文, Dec., 2001.
    20. 劉勳錡, “圓變方三維渠道內黏性可壓縮層流之數值模擬”, 國立成功大學碩士論文, June, 1987.
    21. 鄭兆君, “二維向量化噴嘴之設計與流場分析”, 國立成功大學碩士論文, June,2002.
    22. 鐘武錕, “以實驗方法探討圓形截面轉變為矩形截面之管道流”, 國立成功大學碩士論文, July, 1986.

    下載圖示 校內:立即公開
    校外:2003-07-10公開
    QR CODE