簡易檢索 / 詳目顯示

研究生: 劉再鈜
Liu, Tsai-Hung
論文名稱: 創傷弧菌藍色螢光蛋白應用於革蘭氏陰性菌巨大原生質體發光特性之研究
The Study of luminant property of Vibrio vulnificus Blue Fluorescence Protein Applications for Giant protoplasts of Gram Negative Bacteria
指導教授: 鄭智元
Cheng, Chih-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 91
中文關鍵詞: 報導基因原生質體啟動子創傷弧菌藍色螢光蛋白生物取像
外文關鍵詞: bioimaging, promoter, protoplast, vibrio vulnificus blue fluorescence protein, reporter gene
相關次數: 點閱:114下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在於探討創傷弧菌藍色螢光蛋白基因 (bfp) 與經由DNA變異法所得突變基因 (bfp-d7) 在革蘭氏陰性菌Escherichia coli XL1-Blue與Vibrio vulnificus CKM-1巨大原生質體之螢光表現,並利用巨大原生質體評估重組基因啟動子強度之方法。

    實驗中定義兩種螢光值,分別為比螢光值與總螢光值,比螢光值為去單位化Image-Pro Plus所分析出螢光色階之數據,而總螢光值為比螢光值乘上光學密度(Optical Density 600),可正規化比螢光值,以利起動子效率的估算。啟動子效率偵測方面,共有三種變數,每種變數有兩個參數,分別為菌株 (E.coli XL1-Blue、V.vulnificus CKM-1)、螢光蛋白 (BFP、BFP-D7) 與溫度 (30°C、25°C),搭配起來有8種變化,並根據總螢光值對時間之曲線的最高點到最低點範圍,以線性趨勢線逼近,得趨勢線斜率,代表啟動子效率。比較以上各種變化之啟動子效率,得到一偵測啟動子強度之最佳系統為利用菌株E.coli XL1B在BFP-D7螢光蛋白表現下,於30°C偵測啟動子強度。

    The expression of blue fluorescent protein gene (bfp) and mutated gene (bfp-D7) from bfp by random mutagenesis isolated from Vibrio vulnificus CKM-1 in the giant protoplasts of Escherichia coli XL1B and V. vulnificus CKM-1 were investigated, respectively. In addition, we built a system for quantifying the fluorescent intensity of BFP and screened a high efficiency promoter.

    We defined two kinds of fluorescence density, one was specific blue density that was de-unit data from Image-Pro Plus’ color depth ; another’s overall blue density that was from specific blue density multiplied optical density. The overall blue density was able to represent specific blue density normalization and evaluated transcription efficiency in promoter. About promoter efficiency evaluated, we had three kinds of variables including two parameters with eight variations, one was bateria including E.coli XL1-Blue and V. vulnificus CKM-1, one was fluorescence protein including BFP and BFP-D7, another was temperature including 30°C and 25°C. According the diagram of overall blue density varied with time, we found the slope of regression line fitting the curve which range was from the highest fluorescence value to the lowest value. The slope represented promoter efficiency. The results showed that the most adaptable system to detect promoter intensity was E.coli XL1-Blue_pUD7 in 30°C.

    目錄 中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號對照表 XI 第一章 緒論 1 1-1 前言 1 1-2 細菌細胞外部構造簡介 2 1-2-1 細菌細胞外部構造 2 1-2-2 革蘭氏陰性菌外部構造 3 1-3 原生質體簡介 10 1-4 革蘭氏陰性菌原生質體形成方法 10 1-5 生物冷光蛋白 11 1-5-1 水母 (Aequorea Victoria) 綠色螢光蛋白 13 1-5-2 創傷弧菌 (Vibrio vulnificus) 藍色螢光蛋白 14 1-6 報導基因 (reporter gene) 16 1-7 生物螢光影像 18 1-8 研究動機與目的 18 第二章 實驗材料與方法 20 2-1 實驗材料 20 2-1-1 藥品 20 2-1-2 實驗儀器 21 2-1-3 菌株 22 2-1-4 載體 22 2-1-5 培養基、緩衝液與Stock Solution 23 2-2 實驗方法 26 2-2-1 菌種保存與活化 26 2-2-2 原生質體之製備與培養 26 2-2-3 大腸桿菌之轉型作用 27 2-2-4 製備少量質體DNA 28 2-2-5 原生質體之螢光表現定量與圖像分析 29 2-2-6 細胞計數 30 第三章 結果與討論 31 3-1 原生質體的特性 31 3-1-1 原生質體大小之擷取 31 3-1-2 原生質體的構造 32 3-1-3 V.vulnificus CKM-1菌體大小與生長曲線 33 3-1-4 E.coli XL1B菌體大小與生長曲線 39 3-2 質體構築 44 3-2-1 pUD7載體之構築 44 3-3 螢光取像系統的建立 46 3-3-1 亮區選取 46 3-3-2 螢光亮度值的建立 47 3-3-3 環境螢光背景值的建立 48 3-3-4 原生質體螢光背景值的建立 50 3-3-5 一分鐘螢光衰退半衰期的確立 50 3-3-6 估算啟動子 (Promoter) 效率方法之確立 51 3-4 V.vulnificus CKM-1菌株之螢光表現 53 3-4-1 CKM-1_pUVF1原生質體螢光亮度之變化 53 3-4-2 CKM-1_pUD7原生質體螢光亮度之變化 53 3-5 E.coli XL1B菌株之螢光表現 66 3-5-1 XL1B_pUVF1原生質體螢光亮度之變化 66 3-5-2 XL1B_pUD7原生質體螢光亮度之變化 66 3-6 啟動子效率之比較 80 3-6-1 30°C與25°C啟動子效率之比較 80 3-6-2 BFP-D7與BFP啟動子效率之比較 81 3-6-3 CKM-1與XL1B啟動子效率之比較 81 第四章 結論與未來展望 85 參考文獻 87 自述 91 表目錄 表1-2-1 革蘭氏陽性菌與革蘭氏陰性菌的比較 5 表1-5-1 改質之綠色螢光蛋白 16 表1-6-1 Reporter Gene 17 表2-1-1 菌株 22 表2-1-2 載體 22 表2-1-3 (a) LB培養基組成 23 表2-1-3 (b) GP700培養基組成 23 表2-1-3 (c) SP buffer組成 24 表2-1-3 (d) Solution stoke 24 表2-2-1 (a) 大腸桿菌轉型用試劑 27 表2-2-1 (b) 製備少量質體DNA用試劑 28 表3-3-1 螢光亮度值計算方法 47 表3-6-1 CKM-1總螢光趨勢線之數據 83 表3-6-2 CKM-1 promoter效率之比較順序 83 表3-6-3 XL1B總螢光趨勢線之數據 84 表3-6-4 XL1B promoter效率之比較順序 84 圖目錄 圖1-2-1 膜構造 6 圖1-2-2 革蘭氏陰性菌與革蘭氏陽性菌細胞壁構造之區別 7 圖1-2-3 細菌細胞外部構造 8 圖1-2-4 Peptidoglycan之結構 9 圖1-4-1 原生質體形成步驟圖 11 圖1-5-1 激發電子能階圖 15 圖1-5-2 冷光細菌細胞內藉由luciferase在氧氣存在下之發光機制 15 圖1-5-3 綠色螢光蛋白立體結構與激發、放射光譜圖 15 圖1-5-4 改質之綠色螢光蛋白激發與放射光譜圖 16 圖2-1-1 pUC19 基因圖譜 25 圖2-2-1 血球計數器counting chamber,放大100倍 30 圖3-1-1 細胞影像之擷取 31 圖3-1-2 CKM-1 puD7原生質體形態 32 圖3-1-3 CKM-1正常菌體生長曲線 35 圖3-1-4 CKM-1原生質體生長曲線 36 圖3-1-5 CKM-1_pUVF1菌體濃度與大小 37 圖3-1-6 CKM-1_pUD7菌體濃度與大小 38 圖3-1-7 XL1B正常菌體生長曲線 40 圖3-1-8 XL1B原生質體生長曲線 41 圖3-1-9 XL1B_pUVF1菌體濃度與大小 42 圖3-1-10 XL1B_pUD7菌體濃度與大小 43 圖3-2-1 pUD7質體圖譜 44 圖3-3-1 XL1B_pUD7-10hr (30) 1分鐘色階分佈與背景螢光亮度圖 49 圖3-3-2 XL1B host 原生質體螢光亮度值與半徑關係圖 52 圖3-4-1 CKM-1_pUVF1 (30) 2~16小時原生質體螢光照片、放大400倍 55 圖3-4-2 CKM-1_pUVF1 (25) 2~16小時原生質體螢光照片、放大400倍 56 圖3-4-3 CKM-1_pUVF1原生質體螢光亮度圖 57 圖3-4-4 CKM-1_pUD7_2hr原生質體放大400倍螢光照片與1分鐘衰退趨勢圖 58 圖3-4-5 CKM-1_pUD7_4hr原生質體放大400倍螢光照片與1分鐘衰退趨勢圖 59 圖3-4-6 CKM-1_pUD7_6hr原生質體放大400倍螢光照片與1分鐘衰退趨勢圖 60 圖3-4-7 CKM-1_pUD7_8hr原生質體放大400倍螢光照片與1分鐘衰退趨勢圖 61 圖3-4-8 CKM-1_pUD7_10hr原生質體放大400倍螢光照片與1分鐘衰退趨勢圖 62 圖3-4-9 CKM-1_pUD7_12hr原生質體放大400倍螢光照片與1分鐘衰退趨勢圖 63 圖3-4-10 CKM-1_pUD7_16hr原生質體放大400倍螢光照片與1分鐘衰退趨勢圖 64 圖3-4-11 CKM-1 pUD7原生質體螢光亮度圖 65 圖3-5-1 XL1B_pUVF1 (30) 2~16小時原生質體螢光照片與37C 正常菌體螢光照片、放大400倍 68 圖3-5-2 XL1B_pUVF1 (25) 2~16小時原生質體螢光照片、放大400倍 69 圖3-5-3 XL1B_pUVF1原生質體螢光亮度圖 70 圖3-5-4 XL1B_pUD7-2hr原生質體與正常菌體放大400倍螢光照片與1分鐘螢光衰退趨勢圖 71 圖3-5-5 XL1B_pUD7-4hr原生質體與正常菌體放大400倍螢光照片與1分鐘螢光衰退趨勢圖 72 圖3-5-6 XL1B_pUD7-6hr原生質體與正常菌體放大400倍螢光照片與1分鐘螢光衰退趨勢圖 73 圖3-5-7 XL1B_pUD7-8hr原生質體與正常菌體放大400倍螢光照片與1分鐘螢光衰退趨勢圖 74 圖3-5-8 XL1B_pUD7-10hr原生質體與正常菌體放大400倍螢光照片與1分鐘螢光衰退趨勢圖 75 圖3-5-9 XL1B_pUD7-12hr原生質體與正常菌體放大400倍螢光照片與1分鐘螢光衰退趨勢圖 76 圖3-5-10 XL1B_pUD7-16hr原生質體與正常菌體放大400倍螢光照片與1分鐘螢光衰退趨勢圖 77 圖3-5-11 XL1B_pUD7螢光灰度圖 78 圖3-5-12 添加NADPH對CKM-1 pUD7 (25)原生質體螢光之影響 79 圖3-6-1 CKM-1 啟動子效率圖 83 圖3-6-2 XL1B 啟動子效率圖 84

    參考文獻

    Baumann, P., L. Baumann, M. J. Woolkalis, and S. S. Bang, “Evolution relationship in Vibrio and Photobacterium: a basis for a natural classification,” Annu. Rev. Microbial., 37: 369-398 (1983).

    Birdsell, D. C., and E. H. Cota-Robles, “Production and Ultrastructure of Lysozyme and Ethylenediaminetetraacetate-Lysozyme Spheroplasts of Escherichia coli,” J. Bacteriol., 93: 427-437 (1967).

    Campbell, A.K., “Living light: biochemistry, function and biomedical application,” Essays Biochem., 24: 41-81 (1989).

    Chang, C. C., Y. C. Chuang, Y. C. Chen, and M. C. Chang, “Bright fluorescent of a novel protein from Vibrio vulnificus depends on NADPH and the expression of this protein is regulated by a LysR-type regulatory gene,” Biochem. Biophys. Res. Commun., 319: 207-213 (2004).

    Chang, C. C., Y. C. Yin, and M. C. Chang, “Fluorescent intensity of a novel NADPH-binding protein of Vibrio vulnificus can be improved by directed evolution,” Biochem. Biophys. Res. Commun., 322: 303-309 (2004).

    Costerton, J. W., J. M. Ingram, and K. J. Cheng, “Structure and function of cell envelope of Gram-Negative Bacteria.” Bacteriolgical Reviews, 87-110 (1974).

    Epstein, W., and S. G. Schultz, “Cation Transport in Escherichia coli V. Regulation of cation content”, J. Gen. Physiol., 49: 221-234 (1965).

    Furtado, Agnelo, and Robert Henry, “Measurement of green fluorescent protein concentration in single cells by image analysis,” Anal. Biochem., 310: 84-92 (2002).

    Hastings, J. W., C. J. Potrikus, S. C. Gupta, M. Kurfurst, and J. C. Makemson, “Biochemistry and physiology of bioluminescent bacteria,” Adv. microb. physiol., 26: 235-291 (1985).

    Hsu, R. Y., and H. A. Lardy, “Cleland WW. Pigeon liver malic enzyme. V. Kinetic studies,” J. Biol. Chem., 242: 5315-5322 (1967).

    Hu, w. and C. C. Cheng, “Expression of Aequorea green fluorescent protein in plant cells.” FEBS Letters., 369: 331-334 (1995).

    Jornvall, H., B. Persson, M. Krook, S. Atrian, R. Gonzalez-Duarte, J. Jeffery, and D. Ghosh, “Short-chain dehydrogenases/reductases(SDR),” Biochemistry, 34: 6003-6013 (1995).

    Kahana, J., and P. Silver, “Current protocols in molecular biology,” In Ausabel, F.(ed). Green and Wiley, N.Y. (1996).

    Kuroda, T., N. Okuda, N. Saitoh, T. Hiyama, Y. Terasaki, H. Anazawa, A. Hirata, T. Mogi, I. Kusaka, T. Tsuchiya, I. Yabe, “Patch Clamp Studies on Ion Pumps of the Cytoplasmic Membrane of Escherichia coli,” J. Biol. Chem., 273: 16897-16904 (1998).

    Kusaka, I., “Growth and Division of Protoplasts of Bacillus megateriumand Inhibition of Division by Pencillin,” J. Bacteriol., 94: 884-887 (1967).

    Leive, L., “Studies on the Permeability Chang Produced in Coliform Bacteria by Ethylenediaminetetraacetate,” J. Biol. Chem., 243: 2373-2380 (1968).

    Li, B., and S. X. Lin, “Fluorescence-energy transfer in human estradiol 17 beta-dehydrogenase-NADPH complex and studies on the coenzyme binding,” Eur. J. Biochem., 235: 180-186 (1996).

    Matz, M. V., A. F. Fradkov, Y. A. Labas, A. P. Savitsky, A. G. Zaraisky, M. L. Markelov, and S. A. Lukyanov, “fluorescent proteins from nonbioluminescent Anthozoa species,” Nat. Biotechnol., 17: 969-973 (1999).

    McDougald D., L. M. Simpson, J. D. Oliver, and M. Hudson, “Transformation of vibrio vulnificus by electroporation,” Curren. Microbiol., 28: 289-291 (1994).
    Meighen, E. A., “Molecular biology of bacterial bioluminescence,” Microbiol Rev. 55: 123-142 (1991).

    Meighen, E. A., and I. Bartlet, “Complementation of subunits from different bacterial luciferases. Evidence for the role of the beta subunit in the bioluminescent mechanism,” J. Biol. Chem., 255: 11181-11187 (1980).

    Miksch, G., F. Bettenworth, K. Friehs, and E. Flaschel, “The sequence upstream of the -10 consensus sequence modulates the strength and induction time of stationary-phase promoters in Escherichia coli.” appl. Microbiol. Biotechnol., 69: 312-320 (2005).

    Miksch, G., F. Bettenworth, K. Friehs, E. Flaschel, A. Saalbach, and T. W. Nattkemper, “A rapid reporter system using GFP as a reporter protein for identification and screening of synthetic stationary-phase promoters in Escherichia coli.” appl. Microbiol. Biotechnol., 69: 1-8 (2005).

    Morin, J. G., and J. W. Hastings, ”Energy transfer in a bioluminescent system,” J. Cell Physiol., 77: 313-318 (1979).

    Morise, H., O. Shimomura, F. H. Johnson, and J. Winant, “Intermolecular energy transfer in the bioluminescent system ,” Aequorea. Biochemistry., 13: 2656-2662 (1974).

    Paparella, M., E. Kolssov, B.K. Fleischmenn, J. Hescheler, and S.Bremer, “The use of quantitative image analysis in the assessment of in vitro embryotoxicity endopoints based on a novel embryonic stem cell clone with endoderm-related GFP expression,” Toxicol. Vitro, 16: 589-597 (2002).

    Prakash, Y. S., Fluorescent and Luminescent Probs, 2 nd ed., Academic press, 316-330 (1999).

    Prescott, Harley, Klein, Microbiology, 5th edition, McGraw Hill, New York, 56-59 (2001).

    Schmidt, T. M. , K. Kopecky, and K. H. Nealson, “Bioluminescence of the insect pathogen Xenorhabdus luminescens,” Appl. Environ. Microbiol., 55: 2607-2612 (1989).

    Siegele, D. A., L. Campbell, and J. C. Hu, “Green fluorescent protein as a reporter of transcriptional activity I prokaryotic system,” Methods Enzymol., 305: 499-513 (2000).

    Su, J.H., Y. C. Chung, Y. C. Tsai, and M. C. Chang, “Cloning and Characterization of a Blue Fluorescent Protein from Vibrio vulnificus,” Biochem. Biophys. Res. Commun., 287: 359-365 (2001).

    Tacket, C. O., F. Brenner, and P. A. Blake, “Clinical features and an epidemiological study of Vibrio vulnificus infections,” J. Infect. Dis., 149: 558-561 (1984).

    Yang, F., L.G. Moss, and G. N. Jr. Phillips, “The molecular structure of green fluorescent protein.” Nat. Biotechnol., 14: 1246-1251 (1996).

    Youvan, D.C. and M. E. Michel-Beyerle, “Structure and fluorescence mechanism of GFP,” Nat. Biotechnol., 14: 1219-1220 (1996).

    吳孟純, 大腸桿菌巨大原生質體製作及應用之研究, 成功大學化學工程研究所碩士論文, 1-15 (2002).

    劉智偉, 創傷弧菌之藍色螢光蛋白應用於革蘭氏陰性菌生物取像系統之研究, 1-14 (2005).

    鍾文軒, 創傷弧菌之藍色螢光蛋白應用於大腸桿菌生物取像系統之研究, 成功大學化學工程研究所碩士論文, 1-12 (2004).

    下載圖示 校內:2007-07-07公開
    校外:2007-07-07公開
    QR CODE