簡易檢索 / 詳目顯示

研究生: 賴詩婷
Lai, Shih-Ting
論文名稱: 矩形鰭片陣列於具開孔矩形外殼內之熱傳特性研究
Study of Heat-Transfer Characteristics from Rectangular Fin Arrays in a Rectangular Enclosure with Openings
指導教授: 陳寒濤
Chen, Han-Taw
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 88
中文關鍵詞: 逆算法商業軟體實驗方法熱傳性能矩形鰭片具開孔之矩形外殼
外文關鍵詞: inverse scheme, commercial software, experimental method, heat-transfer characteristics, rectangular fins, enclosure with openings
相關次數: 點閱:128下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以數值逆算法及計算流體力學商業軟體配合實驗方法來探討各種不同型式之散熱鰭片,置於具開孔之矩形外殼,其熱傳特性及流場分佈情形。因鰭片上之熱傳係數可能為不均勻分佈,故於進行數值逆算法之前,整個鰭片將先被分割成數個小區域,且每個小區域上之平均熱傳係數假設為一未知的常數。而後,本文以有限差分法之反算法配合最小平方法(Least squares scheme)、外界空氣溫度量測值及鰭片溫度量測值來預測鰭片上之熱傳係數,除此之外,本文也以計算流體力學商業軟體來求得壓力降、鰭片上之熱傳係數以及矩形外殼內之溫度與速度分佈。結果顯示,鰭片上之平均熱傳係數隨著鰭片間距的增加而增加,隨著鰭片高度增加而減少,為了驗證本文數值結果之正確性與可靠性,本文之平均熱傳係數將和相關文獻之經驗公式的結果相比較,且於鰭片量測位置之計算溫度也將和量測溫度相比較。除此之外,本文亦將探討網格數對數值結果的影響。

    The present study applies the numerical inverse methods and computational fluid dynamics commercial software with the experimental to explore a variety of different types of cooling fins, placed in the openings of rectangular shell, the heat transfer characteristics and flow field distribution. Due to the non-uniform distribution of the heat transfer coefficient, the whole plate fin is divided into several sub-fin regions before performing the inverse scheme, and the average heat transfer coefficient on each sub-fin region is assumed to be unknown. Later, the inverse scheme of the finite difference method in conjunction with the Least squares scheme and experimental measured temperatures is applied to determine the present results. In addition, the paper also by computational fluid dynamics commercial software to obtain the pressure drop, the distribution of temperature and speed of the fins on the heat transfer coefficient as well as within the rectangular enclosure. The results show that the average heat transfer coefficient of fins increased with the increase of fin spacing and reduced as the fin height increases, in order to verify the accuracy and reliability of the numerical results, the average heat transfer coefficient and the associated compared to the literature of the results of the empirical formula, and calculate the temperature of the fin measurement position will also be compared and measured temperature. In addition, this paper will also explore the impact of the grid number on the numerical results.

    摘  要 I ABSTRACT II 誌  謝 III 目  錄 V 表目錄 VIII 圖目錄 X 符號說明 XII 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 2 1-3 研究目的 4 1-4 研究重點與本文架構 5 第二章 逆算法之數值模擬分析 7 2-1 簡介 7 2-2 數學模式之建立 8 2-2-1 矩形鰭片安置於水平平板上 8 2-2-2 矩形鰭片置於垂直平板上 9 2-3 數值分析方法 9 2-3-1 散熱鰭片安置於水平平板上 11 2-3-2 散熱鰭片安置於垂直平板上 11 2-4 逆向熱傳導問題 12 2-5 溫度量測誤差的影響 15 第三章 實驗操作與數據分析 18 3-1 簡介 18 3-2 實驗設備 19 3-3 實驗步驟 21 3-4 鰭片上之熱物理量 22 3-5 實驗組別及操作條件 23 3-6 實驗結果與分析 23 3-6-2鰭片置於水平加熱板上之熱傳結果分析 24 3-6-3鰭片置於垂直加熱板上之熱傳結果分析 25 3-6-4結果分析與比對 26 第四章 商業軟體之數值模擬分析 48 4-1 簡介 48 4-2 統御方程式 48 4-2-1層流模式 49 4-2-2紊流單方程模式 50 4-2-3紊流κ-ε模式 50 4-2-4紊流RNG模式 51 4-3 邊界條件 52 4-4 軟體設定 53 4-5 模擬結果與討論 54 4-5-1模式的選定 54 4-5-2格點測試 55 4-5-3模擬結果分析 56 第五章 綜合結論與未來展望 80 5-1 實驗與數值模擬結果 80 5-2 綜合結論 81 5-3 未來發展方向與建議 81 參考文獻 83 自 述 89

    [1] P. Teertstra, M.M. Yovanovich, J.R. Culham, Analytical forced convection modeling of plate fin heat sinks, Proceedings of 15th IEEE Semi-Therm Symposium (1999) 34-41.
    [2] S.W. Churchill, R. Usagi, A general expression for the correlation of rates of transfer and other phenomena, AIChE Journal 18 (1972) 1121 -1128.
    [3] E.M. Sparrow, Analysis of laminar forced-convection heat transfer in entrance region of Flat rectangular ducts, NACA Technical Note 3331 (1995).
    [4] A. Bejan, Heat Transfer, John Wiley & Sons, Inc., New York, 1993.
    [5] FLUENT Dynamics Software, FLUENT, Lehanon, NH, 2010.
    [6] S.A. El-Sayed, S.M. Mohamed, A.M. Abdel-latif, A.E. Abouda, Investigation of turbulent heat transfer and fluid flow in longitudinal rectangular-fin arrays of different geometries and shrouded fin array, Experimental Thermal and Fluid Science 26 (2002) 879–900.
    [7] E.M. Sparrow, B.R. Baliga, S.V. Patankar, Forced convection heat transfer from a shrouded fin array with and without tip clearance, ASME Journal of Heat Transfer 100 (1978) 572-580.
    [8] E.M. Sparrow, J.E. Niethammer, A. Chaboki, Heat transfer and pressure drop characteristics of arrays of rectangular modules encountered in electronic equipment, International Journal of Heat and Mass Transfer 25 (1982) 961-973.
    [9] D.S. Kadle, E.M. Sparrow, Numerical and experimental study of turbulent heat transfer and fluid flow in longitudinal fin arrays, ASME Journal of Heat Transfer 108 (1986) 16-23.
    [10] M. Dogan, M. Sivrioglu, Experimental investigation of mixed convection heat transfer from longitudinal fins in a horizontal rectangular channel, International Journal of Heat and Mass Transfer 53 (2010) 2149-2158.
    [11] Hewitt, F. Groffrey, Heat Exchanger Design Handbook, Begell House, Inc., 1998, pp. 3340.
    [12] R.A. Wirtz, Effect of flow bypass on the performance of longitudinal fin heat sinks, ASME Journal of Electronic Packaging 116 (1994) 206-212.
    [13] E.A.M. Elshafei, Effect of flow bypass on the performance of a shrouded longitudinal fin array, Applied Thermal Engineering 27 (2007) 2233-2242.
    [14] 陳秋南, 側吹式散熱鰭片阻抗曲線之理論與實驗分析, 2004, 國立清華大學工程與系統科學研究所.
    [15] R.W. Knight, J.S. Goodling, B.E. Gross, Optimal thermal design of air cooled forced-convection finned heat sinks - experimental-verification, IEEE Transactions on Components Hybrids and Manufacturing Technology 15 (1992) 754-760.
    [16] E. Velayati, M. Yaghoubi, Numerical study of convective heat transfer from an array of parallel bluff plates, International Journal of Heat and Fluid Flow 26 (2005) 80-91.
    [17] M. Yaghoubi, E. Velayati, Conjugate heat transfer from surface-mounted finite blunt plates, Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science 220 (2006) 83-94.
    [18] M. Saini, R.L. Webb, Heat rejection limits of air cooled plane fin heat sinks for computer cooling, IEEE Transactions on Components and Packaging Technologies 26 (2003) 71-79.
    [19] E. Yu, Y. Joshi, Heat transfer enhancement from enclosed discrete components using pin-fin heat sinks, International Journal of Heat and Mass Transfer 45 (2002) 4957-4966.
    [20] E.M. Sparrow, A. Haji-Sheikh, T.S. Lundgern, The inverse problem in transient heat conduction, Journal of Applied Mechanics 86 (1964) 369-375.
    [21] N.M. Alnajem, M.N. Özisik, A direct analytical approach for solving linear inverse heat conduction problems, ASME Journal of Heat Transfer 107 (1985) 700-703.
    [22] J.V. Beck, Calculation of surface heat flux from an integral temperature history, ASME Journal of Heat Transfer 62 (1962) 46-51.
    [23] J.V. Beck, Surface heat flux determination using an integral method, Nuclear Engineering and Design 7 (1968) 170-178.
    [24] J.V. Beck, B. Litkouhi, C.R. Stclair, Efficient numerical-solution of nonlinear inverse heat-conduction problem, ASME Journal of Mechanical Engineering 102 (1980) 96-96.
    [25] S. Sunil, J.R.N. Reddy, C.B. Sobhan, Natural convection heat transfer from a thin rectangular fin with a line source at the base – a finite difference solution, International Journal of Heat and Mass Transfer 31 (1996) 127-135.
    [26] H.T. Chen, X.Y. Wu, Estimation of heat transfer coefficient in two-dimensional inverse heat conduction problems, Numerical Heat Transfer Part B-Fundamentals 50 (2006) 375-394.
    [27] H.T. Chen, J.C. Chou, and H.C. Wang, Estimation of heat transfer coefficient on the vertical plate fin of finned-tube heat exchangers for various air speeds and fin spacings, International Journal of Heat and Mass Transfer 50 (2007) 45-57.
    [28] H. T. Chen, W. L. Hsu, Estimation of heat-transfer characteristics on a vertical annular circular fin of finned-tube heat exchangers in forced convection, International Journal of Heat and Mass Transfer 51 (2008) 1920-1932.
    [29] H. T. Chen, L.S. Liu, and S.K. Lee, Estimation of heat-transfer characteristics from fins mounted on a horizontal plate in natural convection, Cmes-Computer Modeling in Engineering & Sciences 65 (2010) 155-178.
    [30] P. Teertstra, J.R. Culham, and M.M. Yovanovich, Analytical modeling of forced convection in slotted plate fin heat sinks, Future Challenges in Electronics Cooling, ASME International Mechanical Engineering Congress and Exposition, Nashville, TN (1999) 15-20.
    [31] K. Bilen, S. Yapici, Heat transfer from a surface fitted with rectangular blocks at different orientation angle, International Journal of Heat and Mass Transfer 38 (2002) 649-655.
    [32] M.H. Yang, R.H. Yeh, J.J. Hwang, Mixed convective cooling of a fin in a channel, International Journal of Heat and Mass Transfer 53 (2010) 760-771.
    [33] A. Baı¨ri, N. Laraqi, J.M. Garcı´a de Marı´a, Numerical and experimental study of natural convection in tilted parallelepipedic cavities for large Rayleigh numbers, Experimental Thermal and Fluid Science 31 (2007) 309–324.
    [34] G. Mittelman, A. Dayan, K. Dado-Turjeman, A. Ullmann, Laminar free convection underneath a downward facing inclined hot fin array, International Journal of Heat and Mass Transfer 50 (2007) 2582–2589.
    [35] M.R. Shaeri, M. Yaghoubi, Numerical analysis of turbulent convection heat transfer from an array of perforated fins, International Journal of Heat and Fluid Flow 30 (2009) 218–228.
    [36] B.E. Launder, A.D. Spalding, Mathematical Method of Turbulence, Academic, London, 1972, pp. 3-51.
    [37] V. Yakhot, S.A. Orszag, Renormalization group analysis of turbulence, Journal of Scientific Computing 1 (1986) 3-51.
    [38] G.L. Lehmann, J. Pembroke, Forced convection air cooling of simulated low profile electronic components: part 1—base case, ASME Journal of Electronic Packaging 113 (1991) 21-26.
    [39] G.L. Lehmann, J. Pembroke, Forced convection air cooling of simulated low profile electronic components: part 2—heat sink effects, ASME Journal of Electronic Packaging 113 (1991) 27-32.
    [40] A.M. Anderson, R.J Moffat, The adiabatic heat transfer coefficient and the superposition kernel function: part 1 - data for arrays of flatpacks for different flow Conditions, ASME Journal of Electronic Packaging 114 (1992) 14–21.
    [41] A.M. Anderson, R.J Moffat, The adiabatic heat transfer coefficient and the superposition kernel function: part 2 – modeling flat pack data as a function of channel turbulence, ASME Journal of Electronic Packaging 114 (1992) 22–28.
    [42] V.S. Arpaci, S.H. Kao, A. Selamet, Introduction to Heat Transfer, Prentice-Hall, NJ, 1999.

    下載圖示 校內:2017-08-03公開
    校外:2017-08-03公開
    QR CODE