簡易檢索 / 詳目顯示

研究生: 羅宇麟
Luo, Yu-Lin
論文名稱: 氮化鋁燃燒合成製程開發
Process Development for Combustion Synthesis of Aluminum Nitride
指導教授: 鍾賢龍
Chung, Shyan-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 131
中文關鍵詞: 氮化鋁燃燒合成
外文關鍵詞: Aluminum nitride, Combustion synthesis
相關次數: 點閱:41下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用片狀鋁粉及球形鋁粉進行氮化鋁燃燒合成之量產製程開發,針對片狀鋁粉本實驗室先前開發之5 kg級量產技術進行改進探討,並將其產物進行後續研磨處理,比較不同部位產物(如黃粉與白粉)研磨難易之差異。針對球形鋁粉則探討先前本實驗遭遇之量產問題提出解決問題之方案,而能達到5 kg級量產之開發。本研究並比較兩種鋁粉進行燃燒合成反應及氮化鋁產物的差異。由實驗結果可知,將片狀鋁粉中之氫氧化鋁添加比例增高,可有效解決產物中夾雜(因鋁熔聚生成之)黑粉的問題,並提升產物之轉化率及產率。以產物最高比例之黃粉與白粉而言,黃粉轉化率最高可達99.99 %,白粉轉化率最高可達98.94 %。將其產物以小型研磨機進行研磨,經過研磨1小時可以得到粒徑D50 = 14.9 µm的黃粉及粒徑D50 = 9.4 µm的白粉,經SEM觀測,黃粉多為結晶面明顯的單一顆粒,而白粉多為小顆粒聚集而成之團聚體。在使用球形鋁粉合成氮化鋁之實驗中發現,球形鋁粉量產問題的關鍵在於引燃劑的選擇及反應快速且足夠的熱量供應,因此藉由片狀鋁粉反應速率快、放熱量高的特性作為頂部引燃用鋁粉,解決了球形鋁粉難以引燃及反應容易中斷的問題,成功建立5 kg量產的技術,轉化率黃粉可達99.66 %,白粉則達99.83 %。

    The research of this thesis includes two aluminum sources. Flake aluminum powder and spherical aluminum powder were used to develop the mass production process of aluminum nitride combustion synthesis. For flake aluminum powder, the production of 5 kg aluminum nitride process and the conversion of aluminum nitride was optimized. The product was subjected to subsequent grinding treatment and compared the difference part (e.g. yellow and white) of aluminum nitride powder. For spherical aluminum powder, the reasons for previous production failure are discussed. The scale-up problem is solved and achieve 5kg mass production development. The difference between the combustion synthesis reaction of two kinds of aluminum powder and the difference of aluminum nitride products will be compared. According to experimental results, increasing the proportion of aluminum hydroxide in the flake aluminum powder can effectively solve the problem of black powder mixed with yellow powder in the product. Reduced aluminum powder coalesence can increase the yield and conversion of the product. The conversion of yellow product can reach 99.99 % and the conversion of white product can reach 98.94 %. After grinding 1 hour, yellow powder with particle size of D50 = 14.9 µm and white powder with particle size of D50 = 9.4 µm can be obtained. By SEM observation, the yellow powder is mostly a single particle with obvious crystal surface, while the white powder mostly agglomerates of small particles. In the experiment of spherical aluminum powder, it was found that the key to solve the problem of mass production lies in the selection of the ignition agent and the fast and sufficient heat supply. Therefore, the characteristics of the rapid reaction rate and high heat release of the flake aluminum powder are used as ignition agent to solve the problems of spherical aluminum powder that is difficult to ignite and the reaction is easily interrupted. The aluminum nitride synthesis successfully reach 5 kg mass production using spherical aluminum powder. The product of yellow powder conversion can reach 99.66 % and the white powder conversion can reach 99.83 %.

    摘要 I Abstract II Extend abstract III 誌謝 XI 目錄 XII 表目錄 XV 圖目錄 XVII 第一章 緒論 1 1-1陶瓷材料簡介 1 1-2氮化鋁性質及應用 2 1-3研究動機與目的 6 第二章 原理與文獻回顧 7 2-1 氮化鋁合成法 7 2-2 燃燒合成法 10 2-2-1熱力學分析 13 2-2-2動力學分析 16 2-3 燃燒合成氮化物 17 第三章 實驗裝置與藥品 20 3-1燃燒合成設備 20 3-2產物處理設備 24 3-3分析儀器 27 3-4實驗藥品 29 第四章 實驗方法 31 4-1 氮化鋁之生產流程 31 4-2 燃燒合成氮化鋁 32 4-2-1 以片狀鋁粉燃燒合成氮化鋁之反應錠製備方式 32 4-2-2 以球形鋁粉燃燒合成氮化鋁之反應錠製備方式 34 4-2-3 燃燒合成實驗步驟 36 4-3 氮化鋁產物之轉化率分析 38 4-4 氮化鋁研磨製程 40 第五章 結果與討論 42 5-1 以片狀鋁粉進行之氮化鋁燃燒合成量產 42 5-1-1 以片狀鋁粉進行氮化鋁燃燒合成量產面臨之問題 42 5-1-2 產物5 kg級之氮化鋁燃燒合成量產 46 5-2 氮化鋁產物之研磨技術開發 53 5-2-1 氮化鋁黃粉之研磨 53 5-2-2 氮化鋁白粉之研磨 58 5-2-3 氮化鋁黃粉及白粉之差異比較 64 5-3 以球形鋁粉進行之氮化鋁燃燒合成量產 71 5-3-1 以球形鋁粉開發氮化鋁燃燒合成 71 5-3-2 量產面臨之問題及量產失敗之原因 73 5-3-3 針對量產失敗原因進行分析及製程改善 75 5-3-4 球形鋁粉新製程之開發 87 5-3-5 產物5kg級之氮化鋁燃燒合成量產 96 5-3-6 產物10 kg級之氮化鋁燃燒合成量產 107 5-4 不同形貌鋁粉燃燒合成氮化鋁之差異 116 5-4-1 片狀鋁粉及球形鋁粉之燃燒合成反應差異 116 5-4-2 片狀鋁粉及球形鋁粉之燃燒合成氮化鋁產物差異 121 第六章 結論 124 第七章 參考文獻 127

    [1] H. K. Sander, “High-tech ceramics”, in C&E News, ed, July 9, 1984.

    [2] L. M. Sheppard, “Aluminum nitride. A versatile but challenging material”, American Ceramic Society Bulletin, Vol.69, No.11, pp. 1801-1812(1990).

    [3] N. Kuramoto, H. Taniguchi, and I. Aso, “Development of translucent aluminum nitride ceramics”, American Ceramic Society Bulletin, Vol.68, No.4, pp. 883-887 (1989).

    [4] J.C. Nipko and C. K. Loong, “Phonon excitations and related thermal properties of aluminum nitride”, Physical Review B, Vol.57, No.17, pp. 10550-10554, 1998.

    [5] G. A. Slack, R. A. Tanzilli, R. O. Pohl, and J. W. Vandersande, “The intrinsic thermal conductivity of AlN”, Journal of Physics and Chemistry of Solids, Vol.48, No.7, pp. 641-647, 1987.

    [6] E. Man, F. Yan, Ame. Cera. Soc., Inc. Vol.26, pp.19-54, 1944.

    [7] F. Miyashiro, N. Iwase, A. Tsuge, F. Ueno, M. Nakahashi, and T. Takahashi, "High Thermal-Conductivity Aluminum Nitride Ceramic Substrates and Packages", Ieee Transactions on Components Hybrids and Manufacturing Technology, Vol.13, No.2, pp. 313-319, 1990.

    [8] T. Watari, T. Akizuki, H. Ikeda, and O. Matsuda, “Shape of AlN podwers prepared by vapor phase reaction of AlCl3.NH3- NH3- N2 system”, Journal of the Ceramic Society of Japan, Vol.97, No.8, pp.864-867, 1989.

    [9] G. Selvaduray and L. Sheet, “Aluminum nitride-review of synthesis methods”, Materials Science and Technology, Vol.9, No.6, pp.463-473, 1993.

    [10] F. J. -H. Haussonne, “Review of the synthesis methods for AlN”, Materials and Manufacturing Processes, Vol.10, No.4, pp.717-775, 1995.

    [11] N. Kuramoto and H. Taniguchi, “Fine powder of aluminum nitride, composition and sintered body thereof and processes for their production”, U.S. Patent No.4,618,592,1986.

    [12] R. Bachelard and P. Joubert, “Aluminum Nitride by Carbothermal Nitridation”, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, Vol.109, pp.247-251, Mar 1989.

    [13] T. Okada, M. Toriyama, and S. Kanzaki, “Synthesis of alumium nitride sintered bodies using the direct nitridation of Al compacts”, Journal of the European Ceramic Society, Vol. 20, No.6, pp.783-787, May 2000.

    [14] K. G. Nickel, R. Riedel, and G. Petzow, “Thermodynamic and Experimental Study of High-Purity Aluminum Nitride Formation from Aluminum Chloride by Chemical Vapor Deposition”, Journal of the American Ceramic Society, Vol.72, No.10, pp.1804-1810, Oct 1989.

    [15] R. Riedel and K. -U. Gaudl, “Formation and Characterization of Amorphous Aluminum Nitride Podwer and Transparent Aluminum Nitride Film by Chemical Vapor Deposition”, Journal of the American Ceramic Society, Vol.74, No.6, pp.1331-1334, Jun 1991.

    [16] W. G. Moore, S. D. Dunmead, K. E. Howard, and K. C. Morse, “Aluminum nitride, aluminum nitride containing solid solutions and aluminum nitride composites prepared by combustion synthesis”, U.S. Patent No.5,649,278, 1997.

    [17] S. L. Chung, W. L. Yu, and C. N. Lin, “A self-propagating high-temperature synthesis method for synthesis of AlN powder”, Journal of Materials Research, Vol.14, No.5, pp.1928-1933, May 1999.

    [18] S. M. Bradshaw and J. L. Spicer, “Combustion synthesis of aluminum nitride particles and whiskers”, Journal of the American Ceramic Society, Vol.82, No.9, pp.2293-2300, Sep 1999.

    [19] J. Subrahmanyam and M. Vijayakumar, “Self-propagating high-temperature synthesis”, Journal of Materials Science, Vol.27, No.23, pp.6249-6273, Dec 1 1992.

    [20] A. G. Merzhanov, “Self-propagating high-temperature synthesis: Twenty years of research and findings”, Combustion and Plasma Synthesis of High-Temperature materials, pp.1-53, 1990.

    [21] Z. A. Munir, “Synthesis of high-temperature materials by self-propagating combustion methods”, American Ceramic Society Bulletin, Vol.67, No.2, pp.342-349, Feb 1988.

    [22] L. M. Sheppard, “Powders that Explode into materials”, Adv. Mater. and Process, Vol.129, No. pp.25-32, 1986.

    [23] J. B. Holt and S. D. Dunmead, “Self-heating synthesis of materials”, Annual Review Materials Science, Vol.21, pp.305-334, 1991.

    [24] B. I. Khaikin and A. G. Merzhanov, “Theory of thermal propagation of a chemical reaction front”, Combustion Explosion and Shock Waves, Vol.2, No.3, pp.22-&, 1966.

    [25] A. G. Strunina, T. M. Martem’yanova, V. V. Barzykin, and V. I. Ermakov, “Ignition of gasless systems by a combustion wave”, Combustion Explosion and Shock Waves, Vol.10, No.4, pp.449-455, 1974

    [26] B. V. Novozhilov, “The rate of propagation of the front of an exothermic reaction in a condensed phase”, Dokl. Akad. Nauk SSSR, Vol.141, pp.151-153, 1961.

    [27] J. Karpinski and S. Porowski, “High pressure thermodynamics of GaN”, Journal of Crystal Growth, Vol.66, pp.11-20, 1984.

    [28] W. -C. Lee, C. -L. Tu, C. -Y. Weng, and S. L. Chung, “A novel process for combustion synthesis of AlN Powder”, Journal of Materials Research, Vol.10, No.3, pp.774-778, Mar 1995.

    [29] A. S. Mukasyan, V. M. Martynenko, A. G. Merzhanov, I. P. Borovinskaya, and M. Y. Blinov, “Mechanism and Principles of Silicon Combustion in Nitrogen”, Combustion Explosion and Shock Waves, vol. 22, pp. 534-540, Sep-Oct 1986.

    [30] A. S. Mukasyan, V. M. Martynenko, A. G. Merzhanov, I. P. Borovinskaya, and M. Y. Blinov, “Mechanism and Principles of Silicon Combustion in Nitrogen”, Combustion Explosion and Shock Waves, vol. 22, pp. 534-540, Sep-Oct 1986.

    [31] Merzhano.Ag, Y. E. Volodin, and Borovins.Ip, “Mechanism of Porous Metal Specimen-Combustion in Nitrogen”, Doklady Akademii Nauk Sssr, vol. 206, pp. 905-&, 1972.

    [32] M. Eslamloogrami and Z. A. Munir, “Effect of Nitrogen Pressure and Diluent Content on the Combustion Synthesis of Titanium Nitride”, Journal of the American Ceramic Society, vol. 73, pp. 2222-2227, Aug 1990.

    [33] A. N. Pityulin, V. A. Shcherbakov, I. P. Borovinskaya, and A. G. Merzhanov, “Laws and Mechanism of Diffusional Surface Burning of Metals”, Combustion Explosion and Shock Waves, vol.15, pp. 432-437, 1979.

    [34] M. Costantino and C. Firpo, “High-Pressure Combustion Synthesis of Aluminum Nitride”, Journal of Materials Research, vol. 6, pp. 2397-2402, Nov 1991.

    [35] S. D. Dunmead, Z. A. Munir, and J. B. Holt, “Gas-Solid Reactions under a Self-Propagating Combustion Mode”, Solid State Ionics, vol. 32-3, pp. 474-481, Feb-Mar 1989.

    [36] I. P. Borovinskaya and V. E. Loryan, Sov. Powder Metall. Met. Ceram., vol. 191, p. 851, 1979.

    [37] J. B. Holt, “Exothermic Process Yields Refractory Nitride Materials”, Industrial Research & Development, vol. 25, pp. 88-91, 1983.

    [38] 翁德名, “氮化硼塗料開發與氮化鋁之燃燒合成及表面改質製程研究”, 國立成功大學碩士論文, 2017.

    [39] 張智偉, “燃燒法合成氮化鋁粉體之新製程開發”, 國立成功大學碩士論文, 2003.

    [40] V. V. Zakorzhevskii, I.P. Borovinskaya, and N. V. Sachkova, “Combustion Synthesis of Aluminum Nitride”, Inorganic Materials, vol. 38, No. 11, pp. 1131-1140, 2002.

    無法下載圖示 校內:2025-07-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE