簡易檢索 / 詳目顯示

研究生: 林彥均
Lin, Yen-Chun
論文名稱: 整合多源影像與深度學習於石綿瓦調查辨識分析
A Study on the Identification Technology for Asbestos by Integrating Multi-Source Imagery and Deep Learning
指導教授: 余騰鐸
Yu, Teng-To
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2026
畢業學年度: 114
語文別: 中文
論文頁數: 141
中文關鍵詞: 深度學習多源影像整合石綿瓦公民科學YOLOv9Sentinel-1
外文關鍵詞: Deep Learning, Multi-Source Image Integration, Asbestos Tile, Citizen Science, YOLOv9, Sentinel-1
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統遙測技術受限於單一感測器的物理特性,在面對複雜都市環境時,常因垂直視角受限、光譜混淆與資料時效落差,導致顯著的觀測盲點。為突破此一技術瓶頸,本研究提出一套整合時間、空間與物理量的多源遙測辨識框架,並以具備高隱蔽性與材質混淆特性的石綿瓦作為實證案例,驗證此方法論在環境治理上的有效性。

    本研究方法分為三層次整合:在物理量整合上,結合航拍影像的紋理特徵(CNN)與衛星光譜特徵(SVM),解決材質混淆問題;在空間整合上,建構「由上而下(衛星/航拍)」與「由下而上(街景/公民參與)」的雙模組架構,利用YOLOv9-E模型克服立面遮蔽死角;在時間整合上,引入Sentinel-1雷達影像進行時序檢核,以排除已拆除之建物。

    研究結果顯示,本框架成功完成了全台灣共計292,876棟含石綿瓦屋頂建築物的定位與測繪。空間整合分析證實,有60.4%的含石綿建物僅能透過地面視角檢出,量化證明了多視角整合的必要性。此外,經由現地採樣修正密度參數(2,356 kg/m³)後,推估全台潛在廢棄物總量約54.5萬公噸。最後,本研究證實結合AI輔助的公民參與模式(F1-Score 90.91%)能有效補足自動化街景的偵測盲區。

    本研究成功建立了一套從宏觀普查到一般尺度辨識的全方位偵測流程。研究成果不僅產出了全國首份建物級石綿分佈圖資,更實證了多源遙測整合能有效突破單一視角的物理限制,可作為未來環境監測與國土治理的技術典範。

    Traditional remote sensing is often constrained by the physical limitations of single sensors, leading to significant observational blind spots in complex urban environments due to restricted vertical viewing angles, spectral confusion, and temporal data gaps. To overcome these technical bottlenecks, this study proposes an integrated identification framework incorporating temporal, spatial, and physical dimensions. Asbestos tiles, characterized by high concealment and material ambiguity, were selected as an empirical case to validate the effectiveness of this methodology for environmental governance.

    The methodology involves three levels of integration: (1) Physical Integration: Combining aerial texture features (CNN) with satellite spectral signatures (SVM) to resolve material confusion; (2) Spatial Integration: Establishing a dual-module architecture that merges "top-down" (satellite/aerial) and "bottom-up" (street view/citizen science) perspectives, utilizing the YOLOv9-E model to overcome facade occlusion; and (3) Temporal Integration: Introducing Sentinel-1 radar imagery for sequential verification to exclude demolished buildings.

    The results indicate that the framework successfully mapped 292,876 asbestos-roofed buildings across Taiwan. Spatial integration analysis revealed that 60.4% of asbestos buildings were detectable only through ground-level perspectives, quantitatively confirming the necessity of multi-view integration. Furthermore, by correcting density parameters via field sampling (2,356 kg/m³), the total potential hazardous waste was estimated at 545,570 tons. Finally, the study demonstrated that the AI-assisted citizen science approach (F1-Score 90.91%) effectively filled the detection gaps left by automated street view analysis.

    This study successfully establishes a comprehensive detection process ranging from macroscopic surveys to microscopic identification. The findings not only produced the first nationwide building-level asbestos database but also empirically verified that multi-source remote sensing integration can effectively surmount the physical limitations of single perspectives, serving as a technical paradigm for future environmental monitoring and land governance.

    考試合格證明 考-i 摘要 摘-i Abstract abstract-i 誌謝 誌謝-i 目錄 目-i 表目錄 表-i 圖目錄 圖-i Abbreviations abbreviation-i 1 第一章 緒論 1 1.1 研究背景:大尺度空間辨識的技術瓶頸 1 1.2 研究動機與問題 3 1.3 研究目的與貢獻 4 1.4 案例選擇 6 2 第二章 文獻回顧 8 2.1 遙測技術於地表材質辨識之應用與限制 8 2.1.1 高光譜:材質辨識的理想工具 8 2.1.2 多光譜與高解析航照:大尺度應用的實務折衷 12 2.1.3 傳統遙測技術之限制 15 2.2 深度學習 (CNN/YOLO) 在空間物件偵測的進展 18 2.2.1 從光譜特徵到空間紋理:卷積神經網路(CNN) 19 2.2.2 YOLO 物件偵測演算法 20 2.2.3 資料增強與模型泛化策略 22 2.3 地面影像、公眾參與地理資訊系統 (PPGIS) 23 2.3.1 Google 街景影像 23 2.3.2 公眾參與地理資訊系統(PPGIS) 24 2.3.3 AI 輔助參與調查 24 2.4 石綿建材廢棄物量估算與密度參數探討 26 2.5 既有研究缺口與本研究定位 27 3 第三章 整合AI與多源影像之石綿建材辨識框架 29 3.1 研究架構與流程說明 29 3.1.1 研究流程總述 29 3.1.2 第一階段:高可信度地真資料建置 32 3.1.3 第二階段:模組A-辨識大範圍石綿瓦屋頂分布 38 3.1.4 第三階段:模組B-多層次驗證 42 3.2 資料來源與前處理 45 3.3 地真資料建置與標註策略 49 3.4 模組A實作:由上而下之屋頂偵測 53 3.4.1 模型選擇與雙模型架構 53 3.4.2 演算法設計與訓練流程 56 3.4.3 決策融合與後處理 (Fusion & Post-Processing) 57 3.4.4 時間序列更新與精度評估 58 3.5 模組B實作:由下而上之立面偵測 60 3.5.1 物件偵測模型選擇 60 3.5.2 YOLOv9 架構原理與優勢 65 3.5.3 超參數設定 (Hyperparameter Settings) 68 3.5.4 參數調校與訓練策略驗證 69 3.6 偵測結果整合與GIS平台應用 71 3.7 驗證方法與評估指標 72 3.8 本章小結 73 4 第四章 案例研究:台灣石綿瓦分布調查 74 4.1 案例背景與研究區域 74 4.1.1 總體研究範圍說明 75 4.1.2 細部驗證示範區:台南市 75 4.2 實驗設置與模型訓練參數 76 4.2.1 第一階段:屋頂分類模型設置 76 4.2.2 第二階段:建築物側邊立面偵測模型設置 77 4.3 第一階段成果:全國屋頂偵測 79 4.3.1 現地採樣與實驗室分析驗證 79 4.3.2 CNN 模型訓練歷程與效能評估 83 4.3.3 全島石綿瓦屋頂空間分布與數量統計 85 4.3.4 獨立檢核與誤差來源分析 90 4.4 第二階段成果:建物側邊立面偵測與公民參與 94 4.4.1 YOLOv9-E 模型偵測效能分析 94 4.4.2 街景影像與群眾外包之效能比較 97 4.5 整合成果與準確度評估 104 4.5.1 異質圖資空間整合策略 104 4.5.2 圖資整合後分布成果 105 5 第五章 討論 110 5.1 AI 模型效能與演算法適應性分析 110 5.2 框架效能分析:量化「視角互補」的關鍵價值 111 5.3 限制與挑戰:技術瓶頸與誤差來源 113 5.4 實際應用意義:從被動清理到精準治理 114 6 第六章 結論與建議 116 6.1 結論 116 6.2 未來展望 118 參考文獻 參-i

    內政部 (2011)。建築技術規則建築構造編。內政部營建署。
    Abbasi, M., Hosseiny, B., Stewart, R. A., Kalantari, M., Patorniti, N., Mostafa, S., & Awrangjeb, M. (2024). Multi-temporal change detection of asbestos roofing: A hybrid object-based deep learning framework with post-classification structure. Remote Sensing Applications: Society and Environment, 34, 101167. https://doi.org/10.1016/j.rsase.2024.101167
    Aranda, N. R., De Waegemaeker, J., & Van de Weghe, N. (2023). The evolution of public participation GIS (PPGIS) barriers in spatial planning practice. Applied Geography, 155, 102940. https://doi.org/10.1016/j.apgeog.2023.102940
    Baek, S.-C., Lee, K.-H., Kim, I.-H., Seo, D.-M., & Park, K. (2023). Construction of Asbestos Slate Deep-Learning Training-Data Model Based on Drone Images. Sensors, 23(19), 8021. https://doi.org/10.3390/s23198021
    Bassani, C., Cavalli, R. M., Cavalcante, F., Cuomo, V., Palombo, A., Pascucci, S., & Pignatti, S. (2007). Deterioration status of asbestos-cement roofing sheets assessed by analyzing hyperspectral data. Remote Sensing of Environment, 109(3), 361-378. https://doi.org/10.1016/j.rse.2007.01.014
    Campopiano, A., Ramires, D., Zakrzewska, A. M., Ferri, R., D'annibale, A., & Pizzutelli, G. (2009). Risk Assessment of the Decay of Asbestos Cement Roofs. The Annals of Occupational Hygiene, 53(6), 627-638. https://doi.org/10.1093/annhyg/mep036
    Cilia, C., Panigada, C., Rossini, M., Candiani, G., Pepe, M., & Colombo, R. (2015). Mapping of asbestos cement roofs and their weathering status using hyperspectral aerial images. ISPRS International Journal of Geo-Information, 4(2), 928-941. https://doi.org/10.3390/ijgi4020928
    Doll, R. (1955). Mortality from lung cancer in asbestos workers. British journal of industrial medicine, 12(2), 81. https://doi.org/10.1136/oem.12.2.81
    Fatima, Z., Tanveer, M. H., Mariam, H., Voicu, R. C., Rehman, T., & Riaz, R. (2024). Performance Comparison of Object Detection Models for Road Sign Detection Under Different Conditions. International Journal of Advanced Computer Science & Applications, 15(12), 996-1005. https://doi.org/10.14569/ijacsa.2024.0151299
    Frassy, F., Candiani, G., Rusmini, M., Maianti, P., Marchesi, A., Nodari, F. R., Via, G. D., Albonico, C., & Gianinetto, M. (2014). Mapping asbestos-cement roofing with hyperspectral remote sensing over a large mountain region of the Italian western alps. Sensors, 14(9), 15900-15913. https://doi.org/10.3390/s140915900
    Gibril, M. B. A., Shafri, H. Z., & Hamedianfar, A. (2017). New semi-automated mapping of asbestos cement roofs using rule-based object-based image analysis and Taguchi optimization technique from WorldView-2 images. International Journal of Remote Sensing, 38(2), 467-491. https://doi.org/10.1080/01431161.2016.1266109
    Grizonnet, M., Michel, J., Poughon, V., Inglada, J., Savinaud, M., & Cresson, R. (2017). Orfeo ToolBox: Open source processing of remote sensing images. Open Geospatial Data, Software and Standards, 2, 1-8. https://doi.org/10.1186/s40965-017-0031-6
    Gubiani, D., Sgrazzutti, G., Basso, M., Viero, E., Tavaris, D., Foresti, G. L., & Scagnetto, I. (2025). A dynamic neural network model for the identification of asbestos roofings in hyperspectral images covering a large regional area. Computer‐Aided Civil and Infrastructure Engineering, 40(7), 879-894. https://doi.org/10.1111/mice.13376
    Hasan, H., Shafri, H. Z., & Habshi, M. (2019). A comparison between support vector machine (SVM) and convolutional neural network (CNN) models for hyperspectral image classification. IOP Conference Series: Earth and Environmental Science, 357(1), 012035. https://doi.org/10.1088/1755-1315/357/1/012035
    Kiviluoto, R. (1960). Pleural calcification as a reontgenologic sign of non-occupational endemic anthophyllite-asbesto-sis. Acta radiol, 194, 1-67.
    Krówczyńska, M., Raczko, E., Staniszewska, N., & Wilk, E. (2020). Asbestos—cement roofing identification using remote sensing and convolutional neural networks (CNNs). Remote Sensing, 12(3), 408. https://doi.org/10.3390/rs12030408
    Krówczyńska, M., & Wilk, E. (2019). Environmental and occupational exposure to asbestos as a result of consumption and use in Poland. International Journal of Environmental Research and Public Health, 16(14), 2611. https://doi.org/10.3390/ijerph16142611
    Krówczyńska, M., Wilk, E., Pabjanek, P., & Kycko, M. (2017). Hyperspectral Discrimination of Asbestos‑Cement Roofing. Geomatics and Environmental Engineering, 11(1), 47-65. https://doi.org/10.7494/geom.2017.11.1.47
    Lanaras, C., Bioucas-Dias, J., Galliani, S., Baltsavias, E., & Schindler, K. (2018). Super-resolution of Sentinel-2 images: Learning a globally applicable deep neural network. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 305-319. https://doi.org/10.1016/j.isprsjprs.2018.09.018
    Lin, Y.-C., Yu, T.-T., Yang, Y.-E., Lin, J.-C., Lien, G.-W., & Lan, S.-C. (2025). Merging Various Types of Remote Sensing Data and Social Participation GIS with AI to Map the Objects Affected by Light Occlusion. Remote Sensing, 17(13), 2131. https://doi.org/10.3390/rs17132131
    Lynch, K. M., & Smith, W. A. (1935). Pulmonary asbestosis III: Carcinoma of lung in asbesto-silicosis. The American Journal of Cancer, 24(1), 56-64.
    Pacifici, F. (2016). On the predictive value of the WorldView3 VNIR and SWIR spectral bands. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 898-901. https://doi.org/10.1109/IGARSS.2016.7729227
    Pinho, C. M. D. d., Silva, F., Fonseca, L., & Monteiro, A. (2008). Intra-urban land cover classification from high-resolution images using the C4. 5 algorithm. ISPRS Congress Beijing, 7. https://doi.org/10.1080/01431161.2012.675451
    Spurny, K. (1989). On the release of asbestos fibers from weathered and corroded asbestos cement products. Environmental research, 48(1), 100-116. https://doi.org/10.1016/s0013-9351(89)80089-1
    Szabó, S., Burai, P., Kovács, Z., Szabó, G., Kerényi, A., Fazekas, I., Paládi, M., Buday, T., & Szabó, G. (2014). Testing algorithms for the identification of asbestos roofing based on hyperspectral data. Environmental Engineering and Management Journal, 143(11), 2875-2880. https://doi.org/10.30638/eemj.2014.323
    Tishby, N., & Zaslavsky, N. (2015). Deep learning and the information bottleneck principle. 2015 ieee information theory workshop (itw), 1-5. https://doi.org/10.1109/ITW.2015.7133169
    Tommasini, M., Bacciottini, A., & Gherardelli, M. (2019). A QGIS tool for automatically identifying asbestos roofing. ISPRS International Journal of Geo-Information, 8(3), 131. https://doi.org/10.3390/ijgi8030131
    Wang, C.-Y., Yeh, I.-H., & Mark Liao, H.-Y. (2024). Yolov9: Learning what you want to learn using programmable gradient information. European conference on computer vision, 1-21. https://doi.org/10.1007/978-3-031-72751-1_1
    Wu, T., Wu, X.-J., & Luo, X.-Q. (2012). A study on fusion of different resolution images. Procedia engineering, 29, 3980-3985. https://doi.org/10.1016/j.proeng.2012.01.605
    Yu, T.-T., Lin, Y.-C., Lan, S.-C., Yang, Y.-E., Wu, P.-Y., & Lin, J.-C. (2022). Mapping asbestos-cement corrugated roofing tiles with imagery cube via machine learning in Taiwan. Remote Sensing, 14(14), 3418. https://doi.org/10.3390/rs14143418
    Zou, Z., Chen, K., Shi, Z., Guo, Y., & Ye, J. (2023). Object detection in 20 years: A survey. Proceedings of the IEEE, 111(3), 257-276. https://doi.org/10.1109/Jproc.2023.3238524

    QR CODE